• Title/Summary/Keyword: Buckley and James estimator

Search Result 5, Processing Time 0.018 seconds

Mean Lifetime Estimation with Censored Observations

  • Kim, Jin-Heum;Kim, Jee-Hoon
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.3
    • /
    • pp.299-308
    • /
    • 1997
  • In the simple linear regression model Y = .alpha.$_{0}$ + .beta.$_{0}$Z + .epsilon. under the right censorship of the response variables, the estimation of the mean lifetime E(Y) is an interesting problem. In this paper we propose a method of estimating E(Y) based on the observations modified by the arguments of Buckley and James (1979). It is shown that the proposed estimator is consistent and our proposed procedure in the simple linear regression case can be naturally extended to the multiple linear regression. Finally, we perform simulation studies to compare the proposed estimator with the estimator introduced by Gill (1983).83).

  • PDF

A Study on Estimating Mean Lifetime After Modifying Censored Observations

  • Kim, Jinh-eum;Kim, Jee-hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.161-171
    • /
    • 1998
  • Kim and Kim (1997) developed a method of estimating the mean lifetime based on the augmented data after imputing censored observations. Assuming the linear relationship between lifetime and covariates, and then introducing the procedure of Buckley and James (1979) to estimate the mean lifetimes of censored observations, they proposed a mean lifetime estimator and its consistency under the regularity conditions. In this article, the Kim and Kim's estimator is compared with the estimator introduced by Gill (1983) through simulations under the various configurations. Also, their estimator is illustrated with two real data sets.

  • PDF

Semiparametric accelerated failure time model for the analysis of right censored data

  • Jin, Zhezhen
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.467-478
    • /
    • 2016
  • The accelerated failure time model or accelerated life model relates the logarithm of the failure time linearly to the covariates. The parameters in the model provides a direct interpretation. In this paper, we review some newly developed practically useful estimation and inference methods for the model in the analysis of right censored data.

A Study on the Conditional Survival Function with Random Censored Data

  • Lee, Won-Kee;Song, Myung-Unn
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.405-411
    • /
    • 2004
  • In the analysis of cancer data, it is important to make inferences of survival function and to assess the effects of covariates. Cox's proportional hazard model(PHM) and Beran's nonparametric method are generally used to estimate the survival function with covariates. We adjusted the incomplete survival time using the Buckley and James's(1979) pseudo random variables, and then proposed the estimator for the conditional survival function. Also, we carried out the simulation studies to compare the performances of the proposed method.

  • PDF

A GEE approach for the semiparametric accelerated lifetime model with multivariate interval-censored data

  • Maru Kim;Sangbum Choi
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.389-402
    • /
    • 2023
  • Multivariate or clustered failure time data often occur in many medical, epidemiological, and socio-economic studies when survival data are collected from several research centers. If the data are periodically observed as in a longitudinal study, survival times are often subject to various types of interval-censoring, creating multivariate interval-censored data. Then, the event times of interest may be correlated among individuals who come from the same cluster. In this article, we propose a unified linear regression method for analyzing multivariate interval-censored data. We consider a semiparametric multivariate accelerated failure time model as a statistical analysis tool and develop a generalized Buckley-James method to make inferences by imputing interval-censored observations with their conditional mean values. Since the study population consists of several heterogeneous clusters, where the subjects in the same cluster may be related, we propose a generalized estimating equations approach to accommodate potential dependence in clusters. Our simulation results confirm that the proposed estimator is robust to misspecification of working covariance matrix and statistical efficiency can increase when the working covariance structure is close to the truth. The proposed method is applied to the dataset from a diabetic retinopathy study.