• Title/Summary/Keyword: Buck-Boost topology

Search Result 50, Processing Time 0.024 seconds

A Study of Interface between Photovoltaic System and Utility Line using a Current-Source PWM Inverter based on Buck-boost topology (Buck-Boost 형태의 전류형 PWM 인버터를 이용한 태양광 발전과 계통연계에 관한 연구)

  • 주성용;양근령;강필순;김철우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.36-42
    • /
    • 2003
  • This paper presents a new current-source PWM inverter based on Buck-boost configuration to interface between photovoltaic system and utility line. Proposed inverter is consisted by two set of buck-boost topology, and the input inductor is designed to be operated on the discontinuous current conduction mode. So high power factor can be achieved without additional input CtUTent controller. As a result, overall system has simple structure, and it can obtain higher ac output rms voltage than the terminal voltage of the photovoltaic system without additional boosting procedure. The operational modes are theoretically analyzed, and then the validity of the proposed system was verified through simulation and experimental results using a prototype.

A High-Efficiency Bidirectional AC/DC Topology for V2G Applications

  • Su, Mei;Li, Hua;Sun, Yao;Xiong, Wenjing
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.899-907
    • /
    • 2014
  • This paper proposes a single-phase bidirectional AC/DC converter topology applied in V2G systems, which consists of an inverter and a bidirectional non-inverting buck-boost converter. This topology can operate in four modes: buck charging, boost charging, buck discharging and boost discharging with high input current quality and unity input power factor. The inverter switches at line frequency, which is different from conventional voltage source inverters. A bidirectional buck-boost converter is utilized to adapt to a wider charging voltage range. The modulation and control strategy is introduced in detail, and the switching patterns are optimized to reduce the current ripple. In addition, the semiconductor losses are analyzed. Simulation and experimental results demonstrate the validity and effectiveness of the proposed topology.

High efficiency photovoltaic DC-DC charger possible to use the buck and boost combination mode (승압 강압 콤비네이션 모드가 가능한 고효율 태양광 충전용 DC-DC 컨버터)

  • Lee, Sang-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • In the present industrial field, the demand for the development of the solar power source device and the charging device for the solar cell is gradually increasing. The solar charger is largely divided into a DC-DC converter that converts the voltage generated from the sunlight to a charging voltage, and a battery and a charger that are charged with an actual battery. The conventional charger topology is used either as a Buck converter or a Boost converter alone, which has the disadvantage that the battery can not always be charged to the desired maximum power as input and output conditions change. Although studies using a topology capable of boosting and stepping have been carried out, Buck-Boost converters or Sepic converters with relatively low efficiency have been used. In this paper, we propose a new Buck Boost combination power converter topology structure that can use Buck converter and Boost converter at the same time to improve inductor current ripple and power converter efficiency caused by wide voltage control range like solar charger.

Bi-directional Buck-Boost DC-DC Converter for Bus Voltage Regulation (Bus 전압 레귤레이션을 위한 쌍방향 Buck-Boost DC-DC컨버터)

  • Ko, Tae-Ill;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.348-350
    • /
    • 1994
  • In this paper, bi-directional buck-boost DC-DC converter for bus regulation system is presented. This converter which has one buck and one boost topology achieves bi-directional power flow using a common power inductor and alternative power switches. By connecting the battery to bus line, it can be regulated to bus voltage and charged the battery alternatively. And as an application, a mode controller is adopted to the converter.

  • PDF

Circuit Topology and Characteristics of Three Phase PWM Noninverting Buck-Boost AC-AC Converter (3상 PWM 비반번 Buck-Boost AC-AC 컨버터의 회로구성과 특성)

  • Choi, Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.116-118
    • /
    • 2005
  • In this paper, a three phase PWM noninverting Buck-Boost AC-AC converter for WCF applications is presented. The PWM noninverting Buck-Boost AC-AC converter is modelled by using vector DQ transformation whereby the basic DC characteristics equation is analytically obtained. Finally, the PSIM simulation shows the validity of the modelling and analysis.

  • PDF

A Study on the Simultaneous Control of Buck and Boost DC-DC Converter by Digital Controller (디지털 제어기에 의한 강압형 및 승압형 DC-DC 컨버터의 동시제어)

  • Park, Hyo-Sik;Kim, Hee-Jun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.3
    • /
    • pp.141-146
    • /
    • 2001
  • This paper presents a one digital controller two topology PWM DC-DC converter that controls, simultaneously, the separate Buck converter and boost converter with the different specification by using an inexpensive and efficient 8 bit micro-controller. One timer interrupt is used for the detection of output feedback voltage, and other two timer interrupts are used for the generation of PWM waveform for Buck and Boost converter. The control characteristics of one digital controller two topology PWM DC-DC converter is validated by experimental results.

  • PDF

Self-Excited Buck-Boost DC-DC Converter (자려식 승강압형 DC-DC 컨버터)

  • Lee, Seong-Gil;An, Tae-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.663-669
    • /
    • 1999
  • This paper presents new self excited DC-DC converters such as Buck-boost type, Buck type and also non-inverting Buck-boost type. The proposed converters has the following advantages: simple topology, small number of circuit components, easy control method. Therefore, these converters are suitable for the portable appliances with battery source. It is especially suited for low power DC-DC conversion applications where non isolation output power is usually required. The steady state characteristics of proposed self exciting Buck-boost DC-DC converter are analysis and the result shows good agreement with experimental value. Furthermore the experimental results for 50W class self oscillating Buck-boost DC-DC converter have been obtained, which demonstrate the high efficiency and good performance.

  • PDF

Novel Self-Excited DC-DC Converters (새로운 자려식 DC-DC 컨버터)

  • Lee, Soung-Ju;Ahn, Tae-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2505-2507
    • /
    • 1999
  • This paper presents novel self excited DC-DC converters such as Buck-boost type, Buck type and also non-inverting Buck-boost type. The proposed converters has the following advantages: simple topology, small number of circuit components, easy control methode. Therefore, these converters are suitable for the portable appliances with battery source. Theoretical analysis and experimental results for SOW class Buck-boost type self oscillation DC-DC converter have been obtained, which demonstrate the high efficiency and good performance.

  • PDF

A Novel Non-Isolated Buck Boost Converter with High Voltage Gain and High Efficiency Characteristics (고변압비와 고효율 특성을 가진 새로운 비절연형 벅부스트 컨버터)

  • Tran, Manh Tuan;Amin, Saghir;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.319-326
    • /
    • 2019
  • The use of high-voltage gain converters is essential for distributed power generation systems with renewable energy sources, such as fuel and solar cells, due to their low-voltage characteristics. In this study, a novel high-voltage gain non-isolated buck boost converter topology is proposed to cope with the need of a high-voltage conversion ratio without the transformer for the renewable energy sources. Given that the proposed topology utilizes the cascode structure, the voltage gain and the efficiency are higher than those of other conventional non-isolated converters. To demonstrate the feasibility of the proposed topology, the operation principle is presented, and the steady-state characteristics are analyzed in detail. The validity of the proposed converter is verified by experiments with a 400 W prototype converter.

A Study on the Step-Up Converter with the New Topology Method (새로운 Topology 방식의 스텝 업(Step-Up) 컨버터에 관한 연구)

  • Jung, Hai-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.889-896
    • /
    • 2020
  • In general, there are various types of boost converters such as Boost converters, Buck-Boost converters, Flyback converters, Push-Pull converters, etc. Among them, Boost converters are the most widely used and step up converters in a very simple form. However, Boost converter has DCM mode operation, big ripple problem and RHPZ problem. In order to solve these problems, a converter to which the new topology was applied was presented, but among them, the KY converter improved the Boost converter's DCM mode operation, the big ripple problem and the RHPZ problem. However, the conventional KY converter has a drawback that the voltage gain is relatively lower than that of the Boost converter. Therefore, in this paper, we proposed a new KY converter that solves the problem of low voltage gain while having the advantages of the conventional KY converter.