• 제목/요약/키워드: Buck dc-dc converter

검색결과 389건 처리시간 0.023초

A Novel Ripple-Reduced DC-DC Converter

  • Tao, Yu;Park, Sung-Jun
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.396-402
    • /
    • 2009
  • A DC/DC converter generally needs to work under high switching frequency when used as an adjustable power supply to reduce the size of magnetic elements such as inductors, transformers and capacitors, but with the rising of the switch frequency, the switch losses will increase and the efficiency will reduce. Recently, to solve these problems, research is actively being done on a soft switching method that can be applied under high frequency and on a PWM converter that can be applied under low frequency such as a multi-level topology. In this paper a novel DC-DC conversion method for reducing the ripple of output voltage is proposed. In the proposed converter, buck converters are connected in series to generate the output voltage. By using this method, the ripple of output voltage can be reduced compared to a conventional buck converter. Particularly when output voltage is low, the number of acting switching elements is less and the result of ripple reduction is more obvious. It is expected that the converter proposed in this paper could be very useful in the case of wide-range output voltage.

Load Regulation을 보상한 Buck DC-DC converter의 설계 (Design of Buck DC-DC converter with improved load regulation)

  • 정진일;박용식;김연상;곽계달
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.528-529
    • /
    • 2008
  • Proposed buck converter includes load current sensing circuit to compensate load regulation. Because error amp has finite gain, there is load regulation in SMPS. In this paper we use variable current source that is added to positive input of comparator and current of current source is changed by sensed load current. The simulation result shows that proposed buck converter has improved load regulation than conventional buck convertor.

  • PDF

2단 3상 PWM AC/DC 컨버터를 이용한 동기발전기 여자제어시스템 (A Study on Excitation System for Synchronous Generator Using Two State Three Phase PWM AC/DC Converter)

  • 이상훈;이동희;안진우
    • 조명전기설비학회논문지
    • /
    • 제21권3호
    • /
    • pp.96-106
    • /
    • 2007
  • 동기발전기의 출력전압은 여자 시스템의 계자 전류 제어에 의해 일정하게 유지된다. 현재 대부분의 발전기 여자기의 여자전류제어를 위해 사용되는 AVR 시스템의 AC/DC 컨버터 부는 출력전압 제어가 가능한 위상제어 컨버터나 출력전압을 제어할 수 없는 다이오드 정류기와 DC/DC 컨버터를 결합하여 사용하고 있다. AC/DC 전력 변환장치로서 위상제어 컨버터나 출력전압을 제어할 수 없는 다이오드 정류기의 경우, AVR시스템의 전력을 공급하는 모선의 역률저하 및 저차 고조파 발생의 문제점을 야기 시키게 된다. 본 논문에서는 동기발전기의 여자전류 제어를 위해 사용되는 AVR 시스템 설계에 있어 단위역률 동작이 가능한 Boost형 AC/DC 컨버터와 모선의 부하변동에 속응성 있게 동작할 수 있는 전류 제어형 Buck 컨버터를 결합한 2단 3상 PWM AC/DC 컨버터에 대해 연구하였다. 제안된 AC/DC 컨버터를 시뮬레이션 한 결과 Boost 컨버터의 경우 단위 역률 동작 및 출력 DC 전압의 Boost 동작이 원할히 이루어졌으며, Buck 컨버터의 경우 다른 위상제어 컨버터에 비해 응답시간이 개선되었음을 알 수 있었다.

고효율, 고전력밀도 아답터를 위한 도통밴드 제어 AC-DC 벅 컨버터 (A Conduction Band Control AC-DC Buck Converter for a High Efficiency and High Power Density Adapter)

  • 문상철;정봉근;구관본
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.38-39
    • /
    • 2017
  • This paper proposes a new control method for an AC-DC Buck converter which is utilized as a front-end converter of a 2-stage high power density adapter. In the conventional adapter applications, 2-stage configuration shows higher power transfer efficiency and higher power density than those of the single stage flyback converter. In the 2-stage AC-DC converter, the boost converter is widely used as a front-end converter. However, an efficiency variation between high AC line and low AC line is large. On the other hand, the proposed conduction band control method for a buck front-end converter has an advantage of small efficiency variation. In the proposed control method, switching operation is determined by a band control voltage which represents output load condition, and an AC line voltage. If the output load increasesin low AC line, the switching operation range is expanded in half of line cycle. On the contrary, in light load and high line condition, the switching operation is narrowed. Thus, the proposed control method reduces switching loss under high AC line and light load condition. A 60W prototype which is configured the buck and LLC converter with the proposed control method is experimented on to verify the validity of the proposed system. The prototype shows 92.16% of AC-DC overall efficiency and 20.19 W/in 3 of power density.

  • PDF

Modeling and Regulator Design for Three-Input Power Systems with Decoupling Control

  • Li, Yan;Zheng, Trillion Q.;Zhao, Chuang;Chen, Jiayao
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.912-924
    • /
    • 2012
  • In hybrid renewable power systems, the use of a multiple-input dc/dc converter (MIC) leads to simpler circuit and lower cost, when compared to the conventional use of several single-input converters. This paper proposed a novel three-input buck/boost/buck-boost converter, which can be used in applications with various values of input voltage. The energy sources in this converter can deliver power to the load either simultaneously or individually in one switching period. The steady relationship, the power management strategy and the small-signal circuit model of this converter have been derived. With decoupling technology, modeling and regulator design can be obtained under multi-loop control modes. Finally, three generating methods of a multiple-input buck/boost/buck-boost converter is given, and this method can be extended to the other multiple-input dc/dc converters.

High Performance Current Sensing Circuit for Current-Mode DC-DC Buck Converter

  • Jin, Hai-Feng;Piao, Hua-Lan;Cui, Zhi-Yuan;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권1호
    • /
    • pp.24-28
    • /
    • 2010
  • A simulation study of a current-mode direct current (DC)-DC buck converter is presented in this paper. The converter, with a fully integrated power module, is implemented by using sense method metal-oxide-semiconductor field-effect transistor (MOSFET) and bipolar complementary metal-oxide-semiconductor (BiCMOS) technology. When the MOSFET is used in a current sensor, the sensed inductor current with an internal ramp signal can be used for feedback control. In addition, the BiCMOS technology is applied in the converter for an accurate current sensing and a low power consumption. The DC-DC converter is designed using the standard $0.35\;{\mu}m$ CMOS process. An off-chip LC filter is designed with an inductance of 1 mH and a capacitance of 12.5 nF. The simulation results show that the error between the sensing signal and the inductor current can be controlled to be within 3%. The characteristics of the error amplification and output ripple are much improved, as compared to converters using conventional CMOS circuits.

Selection of Coupling Factor for Minimum Inductor Current Ripple in Multi-winding Coupled Inductor Used in Bidirectional DC-DC Converters

  • Kang, Taewon;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.879-891
    • /
    • 2018
  • A bidirectional dc-dc converter is used in battery energy storage systems owing to the growing requirements of a charging and discharging mode of battery. The magnetic coupling of output or input inductors in parallel-connected multi modules of a bidirectional dc-dc converter is often utilized to reduce the peak-to-peak ripple size of the inductor current. This study proposes a novel design guideline to achieve minimal ripple size of the inductor current under bidirectional power flow. The newly proposed design guideline of optimized coupling factor is applicable to the buck and boost operation modes of a bidirectional dc-dc converter. Therefore, the coupling factor value of the coupled inductor does not have to be optimized separately for buck and boost operation modes. This new observation is explained using the theoretical model of coupled inductor and confirmed through simulation and experimental test.

저 EMI 및 고품질 출력전압을 위한 멀티레벨 컨버터 (Multi-level Converter for Low EMI and High Quality Output Voltage)

  • 이상훈;이민중;박성준
    • 한국정보통신학회논문지
    • /
    • 제12권11호
    • /
    • pp.2015-2021
    • /
    • 2008
  • 최근 태양광 발전시스템 등 낮은 전압을 발생하는 전원소스를 이용하여 높은 승압효과를 얻기 위한 멀티레벨 인버터에 대한 관심이 높아지고 있다. 본 연구에서는 DC/DC의 출력전압 리플 저감을 위한 새로운 구조의 다중레벨 DC/DC 컨버터를 제안한다. 제안된 컨버터는 Buck컨버터를 직렬로 연결하여 다중전압을 발생하는 구조를 취함으로 기존의 Buck 컨버터에 비하여 출력 전압의 리플을 저감할 수 있었다. 또한 FPGA 기반 멀티레벨 인버터용 스위칭 함수를 구현하고자 하였다.

배터리 에너지 저장장치용 고효율 2kW급 양방향 DC-DC 컨버터 설계 (Design of a 2kW Bidirectional Synchronous DC-DC Converter for Battery Energy Storage System)

  • 이태영;조병극;조영훈;홍찬욱;이한솔;조관열
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.312-323
    • /
    • 2017
  • This paper introduces the bidirectional dc-dc converter design case study, which employs silicon-carbide (SiC) MOSFETs for battery energy storage system (BESS). This converter topology is selected as bidirectional synchronous buck converter, which is composed of a half bridge converter, an inductor, and a capacitor, where the converter has less conduction loss than that of a unidirectional buck and boost converter, and to improve the converter efficiency, both the power stage design and power conversion architecture are described in detail. The conduction and switching losses are compared among three different SiC devices in this paper. In addition, the thermal analysis using Maxwell software of each switching device supports the loss analyses, in which both the 2 kW prototype analyses and experimental results show very good agreement.

Unification of Buck-boost and Flyback Converter for Driving Cascaded H-bridge Multilevel Inverter with Single Independent DC Voltage Source

  • Kim, Seong-Hye;Kim, Han-Tae;Park, Jin-Soo;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.190-196
    • /
    • 2013
  • It presents a unification of buck-boost and flyback converter for driving a cascaded H-bridge multilevel inverter with a single independent DC voltage source. Cascaded H-bridge multilevel inverter is useful to make many output voltage levels for sinusoidal waveform by combining two or more H-bridge modules. However, each H-bridge module needs an independent DC voltage source to generate multi levels in an output voltage. This topological characteristic brings a demerit of increasing the number of independent DC voltage sources when it needs to increase the number of output voltage levels. To solve this problem, we propose a converter combining a buck-boost converter with a flyback converter. The proposed converter provides independent DC voltage sources at back-end two H-bridge modules. After analyzing theoretical operation of the circuit topology, the validity of the proposed approach is verified by computer-aided simulations using PSIM and experiments.