• 제목/요약/키워드: Buccal cortical plate

검색결과 26건 처리시간 0.024초

Tomographic sagittal root position in relation to maxillary anterior bone housing in a Brazilian population

  • Rodrigues, Diogo Moreira;Petersen, Rodrigo Lima;Montez, Caroline;Barboza, Eliane Porto
    • Imaging Science in Dentistry
    • /
    • 제52권1호
    • /
    • pp.75-82
    • /
    • 2022
  • Purpose: This cross-sectional study evaluated and categorized the tomographic sagittal root position (SRP) of the maxillary anterior teeth in a Brazilian population. Materials and Methods: Cone-beam computed tomographic scans of 420 maxillary anterior teeth of 70 patients (35 men and 35 women, mean age 25.2±5.9 years) were evaluated. The SRP was classified as class I, II, III, or IV. In class I, the root is positioned against the buccal cortical plate; in class II, the root is centered in the middle of the alveolar housing; in class III, the root is positioned against the palatal cortical plate; and in class IV, at least two-thirds of the root engage both the buccal and palatal cortical plates. Results: In total, 274 teeth (65.2%) were class I, 39 (9.3%) were class II, 3 (0.7%) were class III, and 104 (24.8%) were class IV. The frequency distribution over the teeth groups was different from the overall analysis. Important differences were found in the frequencies of classes I, II, and IV compared to other populations. Sex was not associated with the SRP classes (P=0.307). Age distribution was significantly different over the classes (P=0.004). Conclusion: The findings of this study on the distribution of SRP classes among the Brazilian population compared to other populations demonstrate that the SRP should be analyzed on a case-by-case basis for an accurate treatment plan in the maxillary anterior area.

Analysis of the root position of the maxillary incisors in the alveolar bone using cone-beam computed tomography

  • Jung, Yun-Hoa;Cho, Bong-Hae;Hwang, Jae Joon
    • Imaging Science in Dentistry
    • /
    • 제47권3호
    • /
    • pp.181-187
    • /
    • 2017
  • Purpose: The purpose of this study was to measure the buccal bone thickness and angulation of the maxillary incisors and to analyze the correlation between these parameters and the root position in the alveolar bone using cone-beam computed tomography (CBCT). Materials and Methods: CBCT images of 398 maxillary central and lateral incisors from 199 patients were retrospectively reviewed. The root position in the alveolar bone was classified as buccal, middle, or palatal, and the buccal type was further classified into subtypes I, II, and III. In addition, the buccolingual inclination of the tooth and buccal bone thickness were evaluated. Results: A majority of the maxillary incisors were positioned more buccally within the alveolar bone, and only 2 lateral incisors(0.5%) were positioned more palatally. The angulation of buccal subtype III was the greatest and that of the middle type was the lowest. Most of the maxillary incisors exhibited a thin facial bone wall, and the lateral incisors had a significantly thinner buccal bone than the central incisors. The buccal bone of buccal subtypes II and III was significantly thinner than that of buccal subtype I. Conclusion: A majority of the maxillary incisor roots were positioned close to the buccal cortical plate and had a thin buccal bone wall. Significant relationships were observed between the root position in the alveolar bone, the angulation of the tooth in the alveolar bone, and buccal bone thickness. CBCT analyses of the buccal bone and sagittal root position are recommended for the selection of the appropriate treatment approach.

실험적 골조직 병소부에 관한 방사선학적 연구 (A RADIOGRAPHIC STUDY ON EXPERIMENTAL BONY LESIONS)

  • 이은기;김재덕
    • 치과방사선
    • /
    • 제17권1호
    • /
    • pp.233-248
    • /
    • 1987
  • The author studied the effect of periapical bone loss on radiographic interpretation by using a dry adult human mandible. Artificial bony lesions were created at the apices of two mandibular second molars and four mandibular bicuspids. The jaw was stabilized and various artificial lesions were radiographed under ideal circumstances. Radiographic pictures were recorded and compared with the size of the actual lesions. The obtained results were as follows: 1. The size of actual lesions were always larger than their radiographic pictures. 2. The size of actual lesion had a greater discrepancy in the molar area where the cortical plates were havier, but the lesions in the bicuspid areas were only slightely larger than their radiographic pictures, and in these areas the cortical plates were quite thin. 3 Periapical lesions located in cancellous bone did not appear on a radiograph, regardless of the size of the created lesion, but when the junctional bone was involved or the cortical plate was perforated, the definite bone destructive change was observed on the roentenogram. 4. Removal of the entire buccal or lingual plate did not affect the trabecular pattern of bone on the roentgenogram. 5. When the cancellous bone and junctional bone were removed simultaneously, altered trabecular patterns were observed on the roentgenogram.

  • PDF

Apicoectomy of maxillary anterior teeth through a piezoelectric bony-window osteotomy: two case reports introducing a new technique to preserve cortical bone

  • Hirsch, Viola;Kohli, Meetu R.;Kim, Syngcuk
    • Restorative Dentistry and Endodontics
    • /
    • 제41권4호
    • /
    • pp.310-315
    • /
    • 2016
  • Two case reports describing a new technique of creating a repositionable piezoelectric bony window osteotomy during apicoectomy in order to preserve bone and act as an autologous graft for the surgical site are described. Endodontic microsurgery of anterior teeth with an intact cortical plate and large periapical lesion generally involves removal of a significant amount of healthy bone in order to enucleate the diseased tissue and manage root ends. In the reported cases, apicoectomy was performed on the lateral incisors of two patients. A piezoelectric device was used to create and elevate a bony window at the surgical site, instead of drilling and destroying bone while making an osteotomy with conventional burs. Routine microsurgical procedures - lesion enucleation, root-end resection, and filling - were carried out through this window preparation. The bony window was repositioned to the original site and the soft tissue sutured. The cases were re-evaluated clinically and radiographically after a period of 12 - 24 months. At follow-up, radiographic healing was observed. No additional grafting material was needed despite the extent of the lesions. The indication for this procedure is when teeth present with an intact or near-intact buccal cortical plate and a large apical lesion to preserve the bone and use it as an autologous graft.

임플랜트전산화단층촬영시 CENTRAL PANORAMIC CURVE의 변화가 하악골의 영상 재구성에 미치는 영향 (INFLUENCE OF CENTRAL PANORAMIC CURVE DEVIATION ON THE MANDIBULAR IMAGE RECONSTRUCTION IN THE IMPLANT CT)

  • 박래정;이삼선;최순철;박태원;유동수
    • 치과방사선
    • /
    • 제28권1호
    • /
    • pp.47-58
    • /
    • 1998
  • The purpose of this study was to investigate an influence of the change of central panoramic curves on the image reconstruction in the dental implant CT. The author designed three experimental groups according to the location of central panoramic curve. In group A, central panoramic curve was determined as the curve connecting the center of roots from the first premolar to the first molar. In group B, central panoramic curve was determined as the line connecting the lingual cortical plate at the level of the mesial aspect of the first premolar with the buccal cortical plate at the level of the mesial aspect of the first molar. In Group C, central panoramic curve was determined as the line connecting the buccal cortical plate at the level of the mesial aspect of the first premolar with the lingual cortical plate at the level of the mesial aspect of the first molar. Twenty four reformatted CT images was acquired from four mandibles embedded in the resin block and twenty four contact radiographs of dog specimens were acquired. Each Image was processed under Adobe Photoshop program analysed by MSPA(mandible/maxilla shape pattern analysis) variables such as MXVD, MXHD, UHD, MHD, and LHD. The obtained results were as follows ; 1. The mean of MXVD variable was 19.9, 20.2, and 20.0 in group A, B, and C, respectively, which were smaller than actual value 20.5. But, there was no significant difference among 3 groups (p>0.05). 2. The mean of MXHD, UHD, MHD, and LHD variables in group A, B, and C was 11.9, 12.2, and 12.3; 9.3, 9.5, and 9.6; 10.0, 10.3, and 10.3; 9.2, 9.3, and 9.4 respectively which were equal to or greater than the actual value 11.8, 9.3, 10.0, and 9.2. But, there was no significant difference among 3 groups (p>0.05). 3. The number of noneffective observations with difference over or under 1 mm with comparison to the actual value was 24(20%), 58(48.3%), and 52(43.3%), respectively, in group A, B, and C. 4. In group A, the number of observations over 1 mm and under 1 mm was 9 and 15, respectively, but in group Band C, the number of observations over 1 mm was more than under 1 mm.

  • PDF

전산화 단층촬영을 이용한 하악관의 해부학적 위치에 관한 연구 (THE ANATOMICAL LOCATION OF THE MANDIBULAR CANAL BY COMPUTED TOMOGRAM)

  • 김학희;조병욱
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제14권1_2호
    • /
    • pp.135-142
    • /
    • 1992
  • This study was performed to define the anatomical position of the mandibular canal and the findings during the sagittal split ramus osteotomy of the mandible. The mandibles of 20 adult Korean were used. The dimension of mandibular canal from the mandibular foramen to the 1st molar was measured at 4 specific coronal-sectional location by CT scan. The results were as follows ; 1. The distance from the mandibular canal to the medial aspect of the buccal cortical plate was greatest($4.5{\pm}1.1mm$) at 2nd molar area and was not significantly greater than at any other section. 2. Buccal cortex was thickest($3.8{\pm}0.9mm$) at 2nd molar and thinnest ($2.5{\pm}0.3mm$) mandibular foramen um 3. The distance from the mandibular canal to the medial aspect of the lingual cortical plate was not significant at any sections. 4. The distance from the mandible canal to the inferior border of mandible was greatest at the mandibular foramen($20.7{\pm}3.9mm$). The canal was located more closely to the inferior border at 1st, 2nd molar area 5. The diameter of the mandibular canal was between $2.5{\pm}0.3mm$ and $2.8{\pm}0.6mm$. 6. The total mandibular thickness was greatest($21.1{\pm}2.6mm$) at 2nd molar area and narrowest($17.2{\pm}3.2mm$) at mandibular foramen area.

  • PDF

하악골과 장골의 조직형태계측 비교 (COMPARATIVE HISTOMORPHOMETRIC ANALYSIS OF MANDIBLE AND ILIAC BONE ON BONE DENSITY)

  • 유소정;정문규
    • 대한치과보철학회지
    • /
    • 제38권1호
    • /
    • pp.12-25
    • /
    • 2000
  • To demonstrate possible influences of general bone density on the mandible, histomorphometric analysis was carried out in mandibles and iliac bones and the correlation of the two bone densities was tested. Comparison of bony density in women and men over 60 years in the mandible was carried out too. Quantitative computed tomography(QCT) was taken in cross-section of mandibles at the same site where histomorphometric analysis was peformed to evaluate the reliability of QCT. The analysis included 40 cadavers with no known diseases affecting the bones. The subjects consisted of 15 females and 25 males with a mean age of 60.3 years. Spearman correlation analysis and Wilcoxon rank sum test was performed. The results were as follows. 1. There was statistically no correlation between the mandible and iliac bone in the values of corrected cortical width(CCW), cortical porosity(POR) in cortex, and total bone volume(TBV), mean trabecular plate thickness(MTPT), mean trabecular plate density(MTPD), and mean trabecular plate separation(MTPS) in trabecular bone. 2. Comparison of women and men over 60 years, men had statistically higher bone density than women except fir POR of buccal and lingual cortex, and WTPD of alveolar trabeculae in mandible. 3. There was statistically significant correlation between TBV of trabecular bone and CT No., but not between POR and CT No. in mandible. According to the results above, there was no correlation between mandible and iliac bone density and between mandibular bony density and age. Further studies are required to support the results. A more noninvasive method to be able to measure the bone density of mandible should be developed and it is necessary to accumulate data on the normal values of bone density of mandible according to age and sex. Further study should be carried out about QCT to measure mandibular bony density using QCT.

  • PDF

Horizontal ridge expansion and implant placement using screws: a report of two cases

  • Kim, Young-Kyun;Kim, Su-Gwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제40권5호
    • /
    • pp.233-239
    • /
    • 2014
  • Implants are typically placed after performing ridge expansion by inserting screws of gradually increasing thickness and good clinical outcomes are often obtained. We placed 11 implants in 6 patients, and one implant failed during osseointegration but it was replaced immediately after removal and successful prosthetic treatments were completed. During these surgeries, buccal cortical plate complete fractures do not occur. Inserting screws for ridge expansion is a successful and predictable technique for implant placement in narrow alveolar bone.

Leukocyte platelet-rich fibrin in endodontic microsurgery: a report of 2 cases

  • Mariana Domingos Pires;Jorge N.R. Martins;Abayomi Omokeji Baruwa;Beatriz Pereira;Antonio Ginjeira
    • Restorative Dentistry and Endodontics
    • /
    • 제47권2호
    • /
    • pp.17.1-17.8
    • /
    • 2022
  • Endodontic microsurgery is a predictable treatment option when orthograde treatment or retreatment is unsuccessful or unfeasible. However, when there is a gross compromise of periapical bone, achievement of bone regeneration after the surgical procedure may be hampered. In such cases, the application of guided tissue regeneration principles, with adjunctive use of leukocyte platelet-rich fibrin to fill the bone defect as a bone substitute and as a membrane to cover the site, provides a cost-effective solution with the benefits of accelerated physiological healing and reduced post-surgical pain and discomfort. This case report presents 2 cases of endodontic microsurgery of the upper lateral incisors with loss of buccal cortical plate, where platelet-rich fibrin was successfully applied.

$Dentascan^{(R)}$을 이용한 하악구치부의 하악관 위치에 관한 임상적 연구 (THE CLINICAL STUDY OF THE MANDIBULAR CANAL LOCATION IN MANDIBULAR MOLAR AREAS USING $DENTASCAN^{(R)}$)

  • 김준철;이승훈;이정근
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권5호
    • /
    • pp.341-347
    • /
    • 2002
  • This study was designed to determine the location of the mandibular canal on lower molar areas. Thirty-three patients were examined with multi-planar reformatted CT scan($Dentascan^{(R)}$). Three kinds of measurements were performed. The first was the distances between the upper border of the mandibular canal and the root apices of the first and second molars, the second was the distance between the cortical plate of the mandible and mandibular canal, and the last was the location of the mandibular canal in the buccolingual plane. The obtained results are as follows 1. The distance between the root apices of lower molars and the superior border of mandibular canal was largest at the mesial root of the first molar, and shortest at the distal root of the second molar(p<0.05). 2. The longest distance between the outer surface of the buccal cortical plate of the mandible and mandibular canal was measured from the distal root of the second molar, and this distance decrease gradually mesially(p<0.05). 3. The distance between the mandibular base and inferior border of mandibular canal was longest at the distal root of the second molar, and shortest at the mesial root of the first molar(p<0.05). 4. The location of mandibular canal was lingually positioned in relation to the axis of teeth and alveolar ridge in molar areas.