• Title/Summary/Keyword: Buccal bone thickness

Search Result 57, Processing Time 0.025 seconds

Evaluation of mandibular cortical bone thickness for placement of temporary anchorage devices (TADs)

  • Kim, Jung-Hoon;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.42 no.3
    • /
    • pp.110-117
    • /
    • 2012
  • Objective: In this study, we measured the cortical bone thickness in the mandibular buccal and lingual areas using computed tomography in order to evaluate the suitability of these areas for application of temporary anchorage devices (TADs) and to suggest a clinical guide for TADs. Methods: The buccal and lingual cortical bone thickness was measured in 15 men and 15 women. Bone thickness was measured 4 mm apical to the interdental cementoenamel junction between the mandibular canine and the 2nd molar using the transaxial slices in computed tomography images. Results: The cortical bone in the mandibular buccal and lingual areas was thicker in men than in women. In men, the mandibular lingual cortical bone was thicker than the buccal cortical bone, except between the 1st and 2nd molars on both sides. In women, the mandibular lingual cortical bone was thicker in all regions when compared to the buccal cortical bone. The mandibular buccal cortical bone thickness increased from the canine to the molars. The mandibular lingual cortical bone was thickest between the 1st and 2nd premolars, followed by the areas between the canine and 1st premolar, between the 2nd premolar and 1st molar, and between the 1st molar and 2nd molar. Conclusions: There is sufficient cortical bone for TAD applications in the mandibular buccal and lingual areas. This provides the basis and guidelines for the clinical use of TADs in the mandibular buccal and lingual areas.

New method of assessing the relationship between buccal bone thickness and gingival thickness

  • Kim, Yun-Jeong;Park, Ji-Man;Kim, Sungtae;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo;Rhyu, In-Chul;Ku, Young
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.6
    • /
    • pp.372-381
    • /
    • 2016
  • Purpose: The aim of this study was to determine the relationship between buccal bone thickness and gingival thickness by means of a noninvasive and relatively accurate digital registration method. Methods: In 20 periodontally healthy subjects, cone-beam computed tomographic images and intraoral scanned files were obtained. Measurements of buccal bone thickness and gingival thickness at the central incisors, lateral incisors, and canines were performed at points 0-5 mm from the alveolar crest on the superimposed images. The Friedman test was used to compare buccal bone and gingival thickness for each depth between the 3 tooth types. Spearman's correlation coefficient was calculated to assess the correlation between buccal bone thickness and gingival thickness. Results: Of the central incisors, 77% of all sites had a buccal thickness of 0.5-1.0 mm, and 23% had a thickness of 1.0-1.5 mm. Of the lateral incisors, 71% of sites demonstrated a buccal bone thickness <1.0 mm, as did 63% of the canine sites. For gingival thickness, the proportion of sites <1.0 mm was 88%, 82%, and 91% for the central incisors, lateral incisors, and canines, respectively. Significant differences were observed in gingival thickness at the alveolar crest level (G0) between the central incisors and canines (P=0.032) and between the central incisors and lateral incisors (P=0.013). At 1 mm inferior to the alveolar crest, a difference was found between the central incisors and canines (P=0.025). The lateral incisors and canines showed a significant difference for buccal bone thickness 5 mm under the alveolar crest (P=0.025). Conclusions: The gingiva and buccal bone of the anterior maxillary teeth were found to be relatively thin (<1 mm) overall. A tendency was found for gingival thickness to increase and bone thickness to decrease toward the root apex. Differences were found between teeth at some positions, although the correlation between buccal bone thickness and soft tissue thickness was generally not significant.

Analysis of the root position of the maxillary incisors in the alveolar bone using cone-beam computed tomography

  • Jung, Yun-Hoa;Cho, Bong-Hae;Hwang, Jae Joon
    • Imaging Science in Dentistry
    • /
    • v.47 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • Purpose: The purpose of this study was to measure the buccal bone thickness and angulation of the maxillary incisors and to analyze the correlation between these parameters and the root position in the alveolar bone using cone-beam computed tomography (CBCT). Materials and Methods: CBCT images of 398 maxillary central and lateral incisors from 199 patients were retrospectively reviewed. The root position in the alveolar bone was classified as buccal, middle, or palatal, and the buccal type was further classified into subtypes I, II, and III. In addition, the buccolingual inclination of the tooth and buccal bone thickness were evaluated. Results: A majority of the maxillary incisors were positioned more buccally within the alveolar bone, and only 2 lateral incisors(0.5%) were positioned more palatally. The angulation of buccal subtype III was the greatest and that of the middle type was the lowest. Most of the maxillary incisors exhibited a thin facial bone wall, and the lateral incisors had a significantly thinner buccal bone than the central incisors. The buccal bone of buccal subtypes II and III was significantly thinner than that of buccal subtype I. Conclusion: A majority of the maxillary incisor roots were positioned close to the buccal cortical plate and had a thin buccal bone wall. Significant relationships were observed between the root position in the alveolar bone, the angulation of the tooth in the alveolar bone, and buccal bone thickness. CBCT analyses of the buccal bone and sagittal root position are recommended for the selection of the appropriate treatment approach.

Assessment of buccal bone thickness of aesthetic maxillary region: a cone-beam computed tomography study

  • Fuentes, Ramon;Flores, Tania;Navarro, Pablo;Salamanca, Carlos;Beltran, Victor;Borie, Eduardo
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.5
    • /
    • pp.162-168
    • /
    • 2015
  • Purpose: The aim of this study was to analyze the anatomical dimensions of the buccal bone walls of the aesthetic maxillary region for immediate implant placement, based upon cone-beam computed tomography (CBCT) scans in a sample of adult patients. Methods: Two calibrated examiners analyzed a sample of 50 CBCT scans, performing morphometric analyses of both incisors and canines on the left and right sides. Subsequently, in the sagittal view, a line was traced through the major axis of the selected tooth. Then, a second line (E) was traced from the buccal to the palatal wall at the level of the observed bone ridges. The heights of the buccal and palatal bone ridges were determined at the major axis of the tooth. The buccal bone thickness was measured across five lines. The first was at the level of line E. The second was at the most apical point of the tooth, and the other three lines were equidistant between the apical and the cervical lines, and parallel to them. Statistical analysis was performed with a significance level of $P{\leq}0.05$ for the bone thickness means and standard deviations per tooth and patient for the five lines at varying depths. Results: The means of the buccal wall thicknesses in the central incisors, lateral incisors and canines were $1.14{\pm}0.65mm$, $0.95{\pm}0.67mm$ and $1.15{\pm}0.68mm$, respectively. Additionally, only on the left side were significant differences in some measurements of buccal bone thickness observed according to age and gender. However, age and gender did not show significant differences in heights between the palatal and buccal plates. In a few cases, the buccal wall had a greater height than the palatal wall. Conclusions: Less than 10% of sites showed more than a 2-mm thickness of the buccal bone wall, with the exception of the central incisor region, wherein 14.4% of cases were ${\geq}2mm$.

Analysis of the root position and angulation of maxillary premolars in alveolar bone using cone-beam computed tomography

  • Yun-Hoa, Jung;Bong-Hae, Cho;Jae-Joon, Hwang
    • Imaging Science in Dentistry
    • /
    • v.52 no.4
    • /
    • pp.365-373
    • /
    • 2022
  • Purpose: This study investigated whether the relationship between the maxillary sinus and the root of the maxillary premolar is correlated with the root position and whether there is a difference in the long axis angle of premolars and the buccal bone thickness according to the sinus-root relationship and root position. Materials and Methods: Cone-beam computed tomographic images of 587 maxillary first premolars and 580 second premolars from 303 patients were retrospectively reviewed. The maxillary sinus floor-root relationship was classified into 4 types, and the root position in the alveolar bone was evaluated as buccal, middle, or palatal. The long axis angle of the maxillary premolars in the alveolar bone and the buccal bone thickness were measured. The correlation between these parameters was analyzed. Results: The maxillary sinus floor-root relationship showed a statistically significant correlation with the root position in the alveolar bone. Most maxillary first premolars were buccally located, and more than half of the second premolars had their roots in the middle. The long axis angle of the premolars was significantly larger in buccal-positioned teeth than in middle-positioned teeth, and the buccal bone was thinner. Conclusion: When the root of the maxillary premolar was separated from the sinus floor, the premolar was often located on the buccal side. Most of the maxillary first premolars had a thinner buccal bone and larger inclination than the second premolars. It is recommended to evaluate the root position, sagittal angle and buccal bone thickness using CBCT for implant treatment planning.

A cone-beam computed tomography evaluation of buccal bone thickness following maxillary expansion

  • Akyalcin, Sercan;Schaefer, Jeffrey S.;English, Jeryl D.;Stephens, Claude R.;Winkelmann, Sam
    • Imaging Science in Dentistry
    • /
    • v.43 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • Purpose: This study was performed to determine the buccal alveolar bone thickness following rapid maxillary expansion (RME) using cone-beam computed tomography (CBCT). Materials and Methods: Twenty-four individuals (15 females, 9 males; 13.9 years) that underwent RME therapy were included. Each patient had CBCT images available before (T1), after (T2), and 2 to 3 years after (T3) maxillary expansion therapy. Coronal multiplanar reconstruction images were used to measure the linear transverse dimensions, inclinations of teeth, and thickness of the buccal alveolar bone. One-way ANOVA analysis was used to compare the changes between the three times of imaging. Pairwise comparisons were made with the Bonferroni method. The level of significance was established at p<0.05. Results: The mean changes between the points in time yielded significant differences for both molar and premolar transverse measurements between T1 and T2 (p<0.05) and between T1 and T3 (p<0.05). When evaluating the effect of maxillary expansion on the amount of buccal alveolar bone, a decrease between T1 and T2 and an increase between T2 and T3 were found in the buccal bone thickness of both the maxillary first premolars and maxillary first molars. However, these changes were not significant. Similar changes were observed for the angular measurements. Conclusion: RME resulted in non-significant reduction of buccal bone between T1 and T2. These changes were reversible in the long-term with no evident deleterious effects on the alveolar buccal bone.

CBCT study of mandibular first molars with a distolingual root in Koreans

  • Kim, Hee-Ho;Jo, Hyoung-Hoon;Min, Jeong-Bum;Hwang, Ho-Keel
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.3
    • /
    • pp.33.1-33.8
    • /
    • 2018
  • Objectives: This study aimed to investigate the prevalence of a separate distolingual root and to measure the thickness of the buccal cortical bone in mandibular first molars in Koreans using cone-beam computed tomography (CBCT) images. Materials and Methods: High-quality CBCT data from 432 patients were analyzed in this study. The prevalence of a separate distolingual root of the mandibular first molar was investigated. The distance from the distobuccal and distolingual root apices to the outer surface of the buccal cortical bone was measured. We also evaluated the thickness of the buccal cortical bone. Results: The prevalence of a separate distolingual root (2 separate distal roots with 1 canal in each root; 2R2C) was 23.26%. In mandibular first molars with 2R2C, the distance from the distobuccal root apex to the outer surface of the buccal cortical bone was 5.51 mm. Furthermore, the distance from the distolingual root apex to the outer surface of the buccal cortical bone was 12.09 mm. In mandibular first molars with 2R2C morphology, the thickness of the buccal cortical bone at the distobuccal root apex of the mandibular first molar was 3.30 mm. The buccal cortical bone at the distobuccal root apex was significantly thicker in the right side (3.38 mm) than the left side (3.09 mm) (p < 0.05). Conclusions: A separate distolingual root is not rare in mandibular first molars in the Korean population. Anatomic and morphologic knowledge of the mandibular first molar can be useful in treatment planning, including surgical endodontic treatment.

Buccal cortical bone thickness on CBCT for mini-implant (치과용 콘빔CT영상에서 미니임플란트를 위한 협측피질골 두께)

  • Goo, Jong-Gook;Lim, Sung-Hoon;Lee, Byoung-Jin;Kim, Jae-Duk
    • Imaging Science in Dentistry
    • /
    • v.40 no.4
    • /
    • pp.179-185
    • /
    • 2010
  • Purpose : Cortical bone thickness is one of the important factor in mini-implant stability. This study was performed to investigate the buccal cortical bone thickness at every interdental area as an aid in planning mini-implant placement. Materials and Methods : Two-dimensional slices at every interdental area were selected from the cone-beam computed tomography scans of 20 patients in third decade. Buccal cortical bone thickness was measured at 2, 4, and 6 mm levels from the alveolar crest in the interdental bones of posterior regions of both jaws using the plot profile function of $Ez3D2009^{TM}$ (Vatech, Yongin, Korea). The results were analyzed using by Mann-Whitney test. Results : Buccal cortical bone was thicker in the mandible than in the maxilla. The thickness increased with further distance from the alveolar crest in the maxilla and with coming from the posterior to anterior region in the mandible (p<0.01). The maximum CT value showed an increasing tendency with further distance from the alveolar crest and with coming from posterior to anterior region in both jaws. Conclusion : Interdental buccal cortical bone thickness varied in both jaws, however our study showed a distinct tendency. We expect that these results could be helpful for the selection and preparation of mini-implant sites.

Cone Beam Computed Tomography Analysis of Mandibular Anatomical Variation in a Patient with Facial Asymmetry (안면 비대칭 환자에서 Cone Beam Computed Tomography를 이용한 하악골 해부학적 변이의 분석)

  • Park, Seong-Won;Oh, Sung-Hwan;Lee, Jae-In
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • Purpose: The study was performed to compare patients with anatomical variations in facial asymmetry with patients in the normal range using cone-beam computed tomography (CBCT) and to take the preoperative condition into consideration in the case of a sagittal split ramus osteotomy (SSRO). Methods: The study was conducted on 46 adult patients composed of 2 subdivided groups, an asymmetry group (n=26) and a symmetry group (n=20). The asymmetry group was divided between patients with hemimandibular hyperplasia (HH, n=8) and hemimandibular elongation (HE, n=18). Using cross-sectional computed tomography images, the thickness of cancelleous bone in the buccal area of the mandible, thickness of buccal cortex in the buccal aspect of the mandible, thickness of cancellous bone in the inferior aspect of the mandible, thickness of buccal cortex in the inferior aspect of the mandible, and cross-sectional surface area of the mandible were measured. Results: In the asymmetry group, the cross-sectional area of the mandible including the inferior alveolar nerve positioned on the affected side was significantly different from the symmetry group. Thickness of cancelleous bone in the buccal aspect of the mandible, thickness of cancelleous bone in the inferior aspect of the mandible, and cross-sectional surface area of the mandible in the affected site of hemimandibular hyperplasia was significantly smaller than in the symmetry group. Conclusion: The inferior alveolar nerve runs lower and in a more buccal direction and shows a smaller cross-sectional surface of the mandible in the hemimandibular hyperplasia patients with asymmetry.

Anatomical position of the mandibular canal in relation to the buccal cortical bone: relevance to sagittal split osteotomy

  • Lee, Han Eol;Han, Se Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.4
    • /
    • pp.167-173
    • /
    • 2018
  • Objectives: Classification of the degree of postoperative nerve damage according to contact with the mandibular canal and buccal cortical bone has been studied, but there is a lack of research on the difference in postoperative courses according to contact with buccal cortical bone. In this study, we divided patients into groups according to contact between the mandibular canal and the buccal cortical bone, and we compared the position of the mandibular canal in the second and first molar areas. Materials and Methods: Class III patients who visited the Dankook University Dental Hospital were included in this study. The following measurements were made at the second and first molar positions: (1) length between the outer margin of the mandibular canal and the buccal cortical margin (a); (2) mandibular thickness at the same level (b); (3) Buccolingual $ratio=(a)/(b){\times}100$; and (4) length between the inferior margin of the mandibular canal and the inferior cortical margin. Results: The distances from the canal to the buccal bone and from the canal to the inferior bone and mandibular thickness were significantly larger in Group II than in Group I. The buccolingual ratio of the canal was larger in Group II in the second molar region. Conclusion: If mandibular canal is in contact with the buccal cortical bone, the canal will run closer to the buccal bone and the inferior border of the mandible in the second and first molar regions.