• Title/Summary/Keyword: Bubbles Flow

Search Result 263, Processing Time 0.02 seconds

수직상향 기체 주입에 따른 기포 및 액상의 유동분석 (Flow Analysis of Bubble and Liquid Phase by Vertical Upward Gas Injection)

  • 서동표;오율권
    • 설비공학논문집
    • /
    • 제15권9호
    • /
    • pp.727-732
    • /
    • 2003
  • In the present study, a PIV measurement and image processing technique were applied in order to investigate the flow characteristics in the gas injected liquid bath. The circulation of liquid was induced by upward bubble flow. Due to the centrifugal force, the flow was well developed near both wall sides than in the center of a bath. The vortex flow irregularly repeated generation and disappearance which helped to accelerate the mixing process. The bubble rise velocity in the bottom region was relatively lower than in the upper region because the energy generated by bubbles' behavior in the region near the nozzle was almost converted into kinetic energy But bubble rise velocity increases with the increase of the axial distance since kinetic energy of rising bubbles is added to buoyancy force. In conclusion, the flow increased bubble rise velocity and the flow of the bottom region became more active.

X-ray 미세 영상기법을 이용한 불투명 튜브 내부 미세기포의 크기 및 속도 동시 측정 (Simultaneous measurement of size and velocity of micro-bubbles in an opaque tube using X-ray micro-imaging technique)

  • 김석;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.45-46
    • /
    • 2003
  • The x-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to different refractive index. Micro-bubbles of $20\~120{\mu}m$ diameter moving upward in an opaque tube $(\phi=2.7mm)$ were tested. For two different working fluids of tap water and DI water, the measured velocity of micro-bubbles is roughly proportional to the square of bubble size.

  • PDF

직접접촉식 LNG기화기 응용을 위한 칼럼 열교환기 기포특성에 관한 연구 (The Characteristics of Bubbles in a Column Heat Exchanger for the Application of Direct Contact LNG Evaporator)

  • 김성종;한승탁;김종보
    • 설비공학논문집
    • /
    • 제3권2호
    • /
    • pp.142-151
    • /
    • 1991
  • In the present investigation, it has been proposed to utilize a direct contact heat exchanger as an evaporator to solve the difficulties such as scaling, corrosion and law thermal efficiencies, associated with the conventional evaporator. Liquified nitrozen was utilized as a working fluid to investigate basic natures of bubble dynamics in the evaporator, and spray nozzles were adopted to inject liquified nitrozen into the spray column with varying flow rates of dispersed phase fluids. Experimentations were carried out in the range of $6.54{\times}10^{-4}kg/s$ - 0.030 kg/s for dispersed phase flow rates with one, three and five nozzle holes. Observing the bubble dynamics for the evaporator the feasibility of utilizing a direct contact heat exchanger as a LNG evaporator has been evaluated. The results show that no eruption phenomena was observed in the present investigation with $LN_2$ and the interface between $N_2$ bubbles and water was fully turbulent. It is believed that the high injection velocity of $LN_2$ through the spray nozzles provide good mixing effects for both heat and mass transfers between water and $N_2$ bubbles. Ice was formed on the surface of the spray nozzle for higher $LN_2$ flow rates. However, even in this case, it is observed that the ice was detached as soon as it was formed. Under the present experimental conditions, the shapes of $LN_2$ bubbles were in the spherical-cap region according to the Clift, Grace and Weber Graphs. The height of foam region caused by the breakup of larger bubbles keeps increasing with high injection velocities until it reaches it's maximum height.

  • PDF

자유표면을 가지는 점성 유동장내의 기포거동에 관한 기초해석 (Basic Analysis of Bubble Behavior in the Viscous Flow Domain with the Free Interface)

  • 박일룡;전호환
    • 대한조선학회논문집
    • /
    • 제39권1호
    • /
    • pp.16-27
    • /
    • 2002
  • 이유체 비압축성 점성 유동장내에서의 이차원 기포의 운동과 변형을 레벨셋 방법을 도입하여 해석하였다. 지배방정식은 유한체적법을 사용하여 해석하였다. 본 방법의 수치계산결과는 발표된 실험결과와 계산결과의 비교를 통해 검증하였다. 수치계산에서는 초기상태에 유동장 내에 두 유체의 비교란 자유표면이 존재할 때 단일 및 다수의 기포의 운동과 변형을 해석하였다. 해석을 통해 표면장력의 변화와 밀도비의 변화에 따른 기포거동의 변화를 살펴볼 수 있었다. 자유표면은 기포가 자유표면으로 상승할 때 기포의 거동에 큰 영향을 끼친다. 레벨셋법을 사용하여 계산된 본 연구의 결과들을 통해서 기포거동의 특성을 살펴볼 수 있었다.

X-ray 미세 영상기법을 이용한 미세기포의 크기 및 속도 동시 측정기술 개발 (X-ray Micro-Imaging Technique for Simultaneous Measurement of Size and Velocity of Micro-Bubbles)

  • 김석;이상준
    • 대한기계학회논문집B
    • /
    • 제28권6호
    • /
    • pp.659-664
    • /
    • 2004
  • It is important to measure precisely the size and velocity of micro-bubbles used in various field. The synchrotron X-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to their different refractive indices. The X-ray micro-imaging technique was found to measure an optical fiber with an accuracy of 0.2%. Micro-bubbles of 20∼60$\mu\textrm{m}$ diameter moving upward in an opaque tube (${\Phi}$=2.7mm) were tested to measure bubble size and up-rising velocity. For DI water, the measured velocity of micro-bubbles is nearly proportional to the square of bubble size, agreed well with the theoretical result. In addition, the synchrotron X-ray micro-imaging technique can measure accurately the size and velocity of several overlapped micro-bubbles.

X-ray 미세 영상기법을 이용한 미세기포의 크기 및 속도 동시측정 (Synchrotron X-ray Micro-imaging Technique for Simultaneous Measurement of Size and Velocity of Micro-bubbles)

  • 김석;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1744-1748
    • /
    • 2004
  • It is important to measure precisely the size and velocity of micro-bubbles used in various field. The synchrotron X-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to their different refractive indices. The X-ray micro-imaging technique was found to measure an optical fiber with an accuracy of 0.2%. Micro-bubbles of $10{\sim}60{\mu}m$ diameter moving upward in an opaque tube (${\phi}=2.7mm$) were tested to measure bubble size and up-rising velocity. For DI water, the measured velocity of micro-bubbles is nearly proportional to the square of bubble size, agreed well with the theoretical result. In addition, the synchrotron X-ray micro-imaging technique can measure accurately the size and velocity of several overlapped micro-bubbles.

  • PDF

Neutronics modeling of bubbles in bubbly flow regime in boiling water reactors

  • Turkmen, Mehmet;Tiftikci, Ali
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1241-1250
    • /
    • 2019
  • This study mainly focused on the neutronics modeling of bubbles in bubbly flow in boiling water reactors. The bubble, ring and homogenous models were used for radial void fraction distribution. Effect of the bubble and ring models on the infinite multiplication factor and two-group flux distribution was investigated by comparing with the homogenous model. Square pitch unit cell geometry was used in the calculations. In the bubble model, spherical and non-spherical bubbles at random positions, sizes and shapes were produced by Monte Carlo method. The results show that there are significant differences among the proposed models from the viewpoint of physical interaction mechanism. For the fully-developed bubbly flow, $k_{inf}$ is overestimated in the ring model by about $720{\pm}6pcm$ with respect to homogeneous model whereas underestimated in the bubble model by about $-65{\pm}9pcm$ with a standard deviation of 15 pcm. In addition, the ring model shows that the coolant must be separated into regions to properly represent the radial void distribution. Deviations in flux distributions principally occur in certain regions, such as corners. As a result, the bubble model in modeling the void fraction can be used in nuclear engineering calculations.

Experimental and numerical assessment of helium bubble lift during natural circulation for passive molten salt fast reactor

  • Won Jun Choi;Jae Hyung Park;Juhyeong Lee;Jihun Im;Yunsik Cho;Yonghee Kim;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1002-1012
    • /
    • 2024
  • To remove insoluble fission products, which could possibly cause reactor instability and significantly reduce heat transfer efficiency from primary system of molten salt reactor, a helium bubbling method is employed into a passive molten salt fast reactor. In this regard, two-phase flow behavior of molten salt and helium bubbles was investigated experimentally because the helium bubbles highly affect the circulation performance of working fluid owing to an additional drag force. As the helium flow rate is controlled, the change of key thermal-hydraulic parameters was analyzed through a two-phase experiment. Simultaneously, to assess the applicability of numerical model for the analysis of two-phase flow behavior, the numerical calculation was performed using the OpenFOAM 9.0 code. The accuracy of the numerical analysis code was evaluated by comparing it with the experimental data. Generally, numerical results showed a good agreement with the experiment. However, at the high helium injection rates, the prediction capability for void fraction of helium bubbles was relatively low. This study suggests that the multiphaseEulerFoam solver in OpenFOAM code is effective for predicting the helium bubbling but there exists a room for further improvement by incorporating the appropriate drag flux model and the population balance equation.

Plasma Flows and Bubble Properties Associated with the Magnetic Dipolarization in Space Close to Geosynchronous Orbit

  • Lee, Ji-Hee;Lee, Dae-Young;Park, Mi-Young;Lee, Eun-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권2호
    • /
    • pp.95-100
    • /
    • 2013
  • In this paper we examine a total of 16 dipolarization events that were observed by THEMIS spacecraft in space close to geosynchronous orbit, r < ${\sim}7\;R_E$. For the identified events, we examine the characteristics of the plasma flows and associated bubbles as defined based on $pV^{5/3}$, where p is the plasma pressure and V the volume of unit magnetic flux. First, we find that the flow speed in the near-geosynchronous region is very low, mostly within a few tens of km/s, except for a very few events for which the flow can rise up to ~200 km/s but only very near the dipolarization onset time. Second, the bubble parameter, $pV^{5/3}$, decreases by a much smaller factor after the dipolarization onset than for the events in the farther out tail region. We suggest that the magnetic dipolarization in the near-geosynchronous region generates or is associated with only very weak plasma bubbles. Such bubbles in the near-geosynchronous region would penetrate earthward only by a small distance before they stop at an equilibrium position or drift around the Earth.

환기 초공동 실험을 위한 캐비테이션 터널 기포 포집부 연구 (Study on Bubble Collecting Section of Cavitation Tunnel for Ventilated Supercavitation Experiments)

  • 백부근;박일룡;김기섭;이건철;김민재;김경열
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.300-306
    • /
    • 2016
  • The gas ventilated by supercavitation splits into smaller bubbles and follows the water passage of the cavitation tunnel. The bubbles quickly return to the test section by rather high speed flow, and interrupt the observation of the supercavitation. To secure clear observation in the test section, the bubble collecting section(settling chamber) of large volume is prepared to collect bubbles in the water passage ahead of the test section. The bubble collecting section should provide enough buoyancy effect to the bubbles for proper bubble collecting. However, rather high-speed oncoming flow produces non-uniform velocity distribution and deteriorates buoyancy effect in the bubble collecting section. In the present study, the bubble collecting space and three porous plates are designed and analyzed through numerical methods, and the bubble collecting function is experimentally validated by 1/10-scaled model in terms of the formation of uniformly low velocity distribution in the bubble collecting section.