• Title/Summary/Keyword: Bubble test

Search Result 208, Processing Time 0.024 seconds

Water Tunnel Test to Simulate Internal Flows of a Solid Rocket Motor (고체추진 내부유동 모사를 위한 수동시험)

  • Kim, Hye-Ung;Kang, Seung-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.181-184
    • /
    • 2009
  • In this study, flow visualization method to simulate internal flows of solid rocket motor in a water tunnel is introduced. The tunnel provides excellent visualization of vortex flows and has been used to propellant grain design of the solid rocket motor. A water tunnel is suggested for the research and the visualization test using dye, hydrogen bubble generator and PIV has been studied and discussed.

  • PDF

Critical Heat Flux and Flow Pattern for Water Flow in Annular Geometry

  • Park, Jae-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.224-229
    • /
    • 1996
  • An experimental study on critical heat flux (CHF) and two-phase flow visualization has been performed for water flow in internally-heated, vertical, concentric annuli under near atmospheric pressure. Tests have been done under stable forced- circulation, upward and downward flow conditions with three test sections of relatively large gap widths (heated length = 0.6 m. inner diameter = 19 mm, outer diameter = 29, 35 and 51 mm). The outer wall of the test section was made up of the transparent Pyrex tube to allow the observation of flow patterns near the CHF occurrence. The CHF mechanism was changed in the order of flooding, chum-to-annular flow transition, and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. Observed parametric trends are consistent with the previous understanding except that the CHF for downward flow is considerably lower than that for upward flow.

  • PDF

An Experimental Study of Flow Boiling Heat Transfer inside Small-Diameter Round Tubes (원형 세관내 대류비등열전달에 관한 실험적 연구)

  • 추원호;방광현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.748-755
    • /
    • 2004
  • Flow boiling heat transfer in small-diameter round tubes has been experimentally studied. The experimental apparatus consisted mainly of refrigerant pump, condenser, receiver, test section of a 1.67 mm inner-diameter round tube and pre-heater for control of refrigerant quality at the inlet of test section. To investigate the effect of bubble nucleation site characteristics of different tube materials, three different tubes of copper, aluminum and brass were used. The ranges of the major experimental parameters were 5∼30 ㎾/$m^2$ of the wall heat flux, 0.0∼0.9 of the inlet vapor quality and the refrigerant mass flux was fixed at 600 kg/$m^2$s. The experimental results showed that the flow boiling heat transfer coefficients in small tubes were affected only by heat flux, but independent of mass flux and vapor quality. The effect of tube material on flow boiling heat transfer was observed small.

Effect of a vertical guide plate on the wind loading of an inclined flat plate

  • Chung, Kung-Ming;Chou, Chin-Cheng;Chang, Keh-Chin;Chen, Yi-Jun
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.537-552
    • /
    • 2013
  • Wind tunnel experiments were performed to study the wind loads on an inclined flat plate with and without a guide plate. Highly turbulent flow, which corresponded to free-stream turbulence intensity on the flat roof of low-rise buildings, was produced by a turbulence generation grid at the inlet of the test section. The test model could represent a typical solar collector panel of a solar water heater. There are up-stream movements of the separation bubble and side-edge vortices, more intense fluctuating pressure and a higher bending moment in the turbulent flow. A guide plate would result in higher lift coefficient, particularly with an increased projected area ratio of a guide plate to an inclined flat plate. The value of lift coefficient is considerably lower with increased free-stream turbulent intensity.

A Study on Purge Gas Inflow according to Valve Operation Sequence during Staged Combustion Cycle Engine Reignition Test (다단연소 사이클 엔진 재점화 시험 시 밸브 작동순서에 따른 퍼지가스 유입에 대한 연구)

  • Hwang, Changhwan;Lee, Jungho;Kim, Chaehyeong;Jeon, Jun-Su;Park, Jae-Young;Lee, Kwang-Jin;Cho, Nam-Kyung;Kim, SeungHan;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.64-71
    • /
    • 2022
  • For the development of an improved upper-stage engine, research on a staged combustion cycle liquid rocket engine is in progress. A cold flow test, ignition test, and combustion test plans were established and performed to develop reignition combustion technology. In order to solve the problem of purge gas flowing into the fuel line, which may cause cavitation in the turbo pump during reignition, the test results of each stage were analyzed. Based on the analysis results, the purge gas inflow problem was solved by reducing the overlapping time between the operation of the bubble removal valve and the opening of the purge valve and the engine fuel valve. Based on this, the reignition combustion test was successfully performed.

Sensitivity Analysis of Initial Pressure and Upper Control Limit on the Pressure Decay Test for Membrane Integrity Evaluation (압력손실시험을 이용한 막 완결성 평가에서 초기압력 및 UCL 도출인자 민감도 분석)

  • Lee, Joohee;Hong, Seungkwan;Hur, Hyunchul;Lee, Kwangjae;Choi, Youngjune
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.793-800
    • /
    • 2008
  • Recently domestic drinking water industry has recognized membrane-based technology as a promising alternative for water treatment. To ensure successful application of membrane processes, the integrity of membrane systems should be maintained. According to US EPA guidance, the pressure decay test based on the bubble point theory is recommended to detect any membrane defection of which size is close to the smallest diameter of Cryptosporidium oocysts, $3{\mu}m$. Proper implementation of the pressure decay test is greatly affected by initial test pressure, and the interpretation of the test results is associated with upper control limit. This study is conducted to investigate various factors affecting determination of initial test prtessure and upper control limit, including membrane-based parameters such as pore shape correction factor, surface tension and contact angle, and system-based parameters, such as volumetric concentration factor and total volume of system. In this paper, three different hollow fibers were used to perform the pressure decay test. With identical initial test pressure applied, their pressure decay tendency were different from each other. This finding can be explained by the micro-structure disparity of those membranes which is verified by FESEM images of those membranes. More specifically, FESEM images revealed that three hollow fibers have asymmetry, deep finger, shallow finger pore shape, respectively. In addition, sensitivity analysis was conducted on five parameters mentioned above to elucidate their relation to determination of initial test pressure and upper control limit. In case of initial pressure calculation, the pore shape correction factor has the highest value of sensitivity. For upper control limit determination, system factors have greater impact compared to membrane-based parameters.

The changes of the plasma protein and the complements ($C_{3}$, $C_{4}$) after open heart surgery (개심수술후 혈장 단백 및 보체 ($C_{3}$, $C_{4}$)의 변화상 추적)

  • 남충희
    • Journal of Chest Surgery
    • /
    • v.19 no.4
    • /
    • pp.558-562
    • /
    • 1986
  • The extracorporeal circulation has been much improved recently, but has yet much complex problems such as the protein denaturation and the activation of the complement system by the exposure of the blood to the foreign surface, which may result in such as the postperfusion syndrome. We studied the changes of the plasma protein fractions by the electrophoresis and the complement consumption [C3, C4] by the immunodiffusion method in the patients undergoing cardiac operation from Mar. 1, 1986 to Aug. 31, 1986. The results were summarized as follows: 1. y-globulin fraction was decreased [p<0.02 by paired t-test, N=25], but a,-globulin was increased [p<0.001 by paired t test, N=25] after operation. 2. C3,C4 were significantly reduced [p<0.001 by paired t-test, N=14] postoperatively and normalized from 24 hours after operation. 3. The consumption of C3,C4 had significant linear correlation [correlation coefficient r=0.97] and C, was more markedly reduced comparing with C3, which probably means the complement activation by classical pathway in our bubble oxygenator group.

  • PDF

Selection of Surfactant and Operation Scheme for Improved Efficiency of In-situ Soil Flushing Process (원위치 토양세척 공정의 효율향상을 위한 세제선정과 운전기법)

  • Son, Bong-Ho;Lim, Bong-Su;Oa, Seong-Wook;Lee, Byung-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.824-830
    • /
    • 2006
  • Several tests were conducted to optimize the design parameters of ln-situ soil flushing processes for diesel contaminated soil. According to the batch extraction test for three anionic surfactants evaluation, Calgonit limiting bubble occurrence was selected for its higher oil cleaning efficiency. After optimum surfactant selection, there were many sets of column flushing test. Over 70% of BTEX was removed in this surfactant dose with 400% of soil volume. In the case of no surfactant addition flushing in column, so called "blank flushing test", BTEX removal rate was 64%. But when we reused the effluent for the cleaning solution, the removal rate was decreased to 46.9%. This result showed reabsorption of oil occurred on the soil. With the addition of Calgonit solution to the diesel contaminated column, BTEX was removed up to 98.9% during the first flushing and 99.4% for the second recirculation flushing. In microcosm tests, diesel contaminated soils were cleaned by both surfactant flushing and biological activities. In anoxic condition, nitrate was used as an electron acceptor while the surfactant and the oil were used an electron donor. BTEX removal efficiency could be achieved up to 80% by biological degradation.

TRIGGERING AND ENERGETICS OF A SINGLE DROP VAPOR EXPLOSION: THE ROLE OF ENTRAPPED NON-CONDENSABLE GASES

  • Hansson, Roberta Concilio
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1215-1222
    • /
    • 2009
  • The present work pertains to a research program to study Molten Fuel-Coolant Interactions (MFCI), which may occur in a nuclear power plant during a hypothetical severe accident. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) were investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography. The current study is concerned with the MISTEE-NCG test campaign, in which a considerable amount of non-condensable gases (NCG) are present in the film that enfolds the molten droplet. The SHARP images for the MISTEE-NCG tests were analyzed and special attention was given to the morphology (aspect ratio) and dynamics of the air/ vapor bubble, as well as the melt drop preconditioning. Energetics of the vapor explosion (conversion ratio) were also evaluated. The MISTEE-NCG tests showed two main aspects when compared to the MISTEE test series (without entrapped air). First, analysis showed that the melt preconditioning still strongly depends on the coolant subcooling. Second, in respect to the energetics, the tests consistently showed a reduced conversion ratio compared to that of the MISTEE test series.

Microstructure characterization technique of spacer garter spring coil X-750 material (스페이서 가터 스프링 코일 X-750 소재 정밀 조직 분석 방법)

  • Hyung-Ha Jin;I Seol Ryu;Gyeng-Geun Lee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.109-118
    • /
    • 2021
  • In the periodic surveillance material test for the spacer component of fuel channel assembly in CANDU, a microstructural characterization analysis is required in addition to the mechanical property evaluation test. In this study, detailed microstructure analysis and simple mechanical property evaluation of archive spacer parts were conducted to indirectly support the surveillance test and assist in the study of spacer material degradation. We investigated the microstructural characteristics of the spacer garter spring coil through comparative analysis with the plate material. The main microstructure characteristics of the garter spring coil X-750 are represented by the fine grain size distribution, the ordering phase distribution developed inside the matrix, the high dislocation density inside the grains, and the arrangement of coarse carbides. In addition, the yield strength of the garter spring coil X-750 was indirectly evaluated to be approximately 1 GPa. We also established an analytical method to elucidate the microstructural evolution of the radioactive spacer garter spring coil X-750 based on Canadian research experiences. Finally, we confirmed the measurement technique for helium bubble formation through TEM examination on the helium implanted X-750 material.