• Title/Summary/Keyword: Bubble pulse

Search Result 33, Processing Time 0.021 seconds

Integrated Structural Dynamic Response Analysis considering the UNDEX Shock Wave and Gas Bubble Pulse (수중폭발 충격파와 가스구체 압력파를 함께 고려한 구조물의 동적응답해석)

  • Lee, Sang-Gab;Hwon, Jeong-Il;Chung, Jung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.148-153
    • /
    • 2007
  • Two typical impact loadings, shock wave and gas bubble pulse, due to UNDEX(UNDerwater EXplosion), should be considered together for the closest response analysis of structure subjected to UNDEX to a reality. Since these two impact loadings have different response time bands, however, their response characteristics of structure are different from each other. It is impossible to consider these effectively under the current computational environment and the mathematical model has not yet been developed. Whereas Hicks model approximates the fluid-structure interaction due to gas bubble pulse as virtual mass effect, treating the flow by the response of gas bubble after shock wave as incompressible ideal fluid contrary to the compressible flow due to shock wave, Geers-Hunter model could make the closest response analysis of structure under UNDEX to a real one as a mathematical model considering the fluid-structure interaction due to shock wave and gas bubble pulse together using acoustic wave theory and DAA(Doubly Asymptotic Approximation). In this study, the application and effectiveness of integrated dynamic response analysis of submerged structure was examined with the analysis of the shock wave and gas bubble pulse together.

Laser Induced Microjet Drug Delivery System: Drug Permeation Depending on Laser Wavelength and Pulse Duration (레이저 유도 마이크로젯을 활용한 약물 전달 방식: 레이저 파장 및 펄스길이에 따른 약물 침투 분석)

  • Jang, Hun jae;Ham, Hwi chan;Yoh, Jai ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.463-468
    • /
    • 2017
  • For transdermal drug delivery, needless injection system is composed of laser and microjet injector. Main mechanism of microjet injector is the laser-induced bubble. Nd:YAG and Er:YAG laser are used as a power source. Laser parameters such as pulse duration and wavelength are considered, which are core parameters to control the bubble motion. The Nd:YAG laser, pulse duration is short than bubble life time making cavitation like bubble while in Er:YAG laser, long pulse duration and high absorption in water drive bubble as a boiling bubble. Detailed motion of bubble and microjet is captured by the high speed camera. So it is observed that microjet characteristics are determined by the bubble behavior. The performance of drug delivery system is evaluated by fluorescent staining of guinea pig skin.

Whipping factor - a Measure of Damage Potential of an UNDEX Bubble Pulse (휘핑계수-수중폭발 가스구체 압력파 크기의 척도)

  • Kwon, Jeong-Il;Chung, Jung-Hoon;Lee, Sang-Gab
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.637-643
    • /
    • 2005
  • A new novel Whipping Factor is proposed as a measure of the ship damage potential due to an underwater explosion bubble pulse. The factor was derived from the relationships among the charge weight, its depth and the fluid acceleration due to pulsating gas bubble. From the whipping response analyses for three uniform Timoshenko beams with similar characteristics of real naval surface ships, we have confirmed the maximum bending moment responses of beams due to whipping are almost same if the applied whipping factor is constant regardless of the charge weights and depths, which could validate the proposed whipping factor.

The Micro-Actuator Development of using the Bubble (기포를 이용한 마이크로 액츄에이터 개발)

  • 최종필;반준호;전병희;장인배;김헌영;김병희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.381-385
    • /
    • 2003
  • This paper presents the fabrication possibility of the micro actuator which uses a micro-thermal bubble, generated by a micro-heater under pulse heating. The micro-actuator is consist of three plate. The lower plate includes the channel and chamber are fabricated on high processability silicon wafer by the DRIE(Deep Reactive ion Etching) process. The middle plate includes the chamber and diaphragm, and the upper plate is the micro-heater. The micro-heater designed non-uniform width and results in periodic generation of stable single bubbles in D.I water. The single bubble appears precisely on the narrow part of the micro-heater and control is recorded.

  • PDF

Experimental Analysis of Bubble Dynamics Induced by Pulsed-Laser Heating of Absorbing Liquid (흡광 액체의 펄스 레이저 가열에 의해 생성된 기포 거동의 실험적 해석)

  • Jang Deok-Suk;Hong Jong-Gan;Choa Sung-Hoon;Kim Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.413-421
    • /
    • 2006
  • The bubble dynamics induced by direct laser heating is experimentally analyzed as a first step to assess the technical feasibility of laser-based ink-jet technology. To understand the interaction between laser light and ink, the absorption spectrum is measured for various ink colors and concentrations. The hydrodynamics of laser-generated bubbles is examined by the laser-flash photography. When an Ar ion laser pulse (wavelength 488 nm) with an output power up to 600 mW is incident on the ink solution through a transparent window, a hemispherical bubble with a diameter up to ${\sim}100{\mu}m$ can be formed with a lifetime in a few tens of microsecond depending on the laser power and the focal-spot size. Parametric study has been performed to reveal the effect of laser pulse width, output power, ink concentration, and color on the bubble dynamics. The results show that the bubble generated by a laser pulse is largely similar to that produced by a thin-film heater. Consequently, the present work demonstrates the feasibility of developing a laser-actuated droplet generation mechanism for applications in ink-jet print heads. Furthermore, the results of this work indicate that the droplet generation frequency is likely to be further increased by optimizing the process parameters.

Bubble Behavior and Radiation for Laser-Induced Collapsing Bubble in Water (물 속에서 레이저에 의하여 생성된 기포의 거동 및 복사현상)

  • Karng, Sarng-Woo;Byun, Ki-Taek;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1282-1287
    • /
    • 2004
  • The bubble behavior and the radiation mechanism from a laser-induced collapsing bubble were investigated theoretically using the Keller-Miksis equation for the bubble wall motion and analytical solutions for the vapor inside bubble. The calculated time dependent bubble radius is in good agreement with observed ones. The half-width of the luminescence pulse at the collapse point, which was calculated under assumption that the light emission mechanism is black body radiation from the vapor bubble agreed well with observed value of several nanoseconds. The gas content inside the vapor bubble was too small to produce the light emission due to bremsstrahlung.

  • PDF

Bubble-type Motion Detector Using a Pulsed-mode Oscillator and Delay Line (펄스 모드 발진기와 지연선로를 이용한 버블형 동작감지기)

  • Lee, Ik-Hwan;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.342-348
    • /
    • 2015
  • This paper presents a new motion detector that has a bubble-layer detection zone using a pulsed-mode oscillator and delay line. The proposed motion detector controls the bubble-layer detection zone with pulse width of transmitted signals and creates IF signals only by reflected signals from the target within the detection zone whose position is determined by time delay of the delay line. The fabricated motion detector uses the pulsed-mode voltage controlled oscillator as a signal source which has a center frequency of 8 GHz, pulse width of 2 nsec and pulse period of 30 nsec. It successfully makes the bubble-layer detection zones at 1 m, 3 m and 5 m distant from itself using two delay lines with 7 nsec and 12 nsec delay, and is also demonstrated to detect the target within the detection zones.

A Study on BEM-Based Numerical Simulation Technique for Underwater Explosions (수중 폭발 시뮬레이션을 위한 경계 요소법 기반의 수치 해석 기법 연구)

  • Choung, Joonmo;Lee, Jae-bin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.271-277
    • /
    • 2020
  • Recoverability and vulnerability of navy ships under underwater explosion are critical verification factors in the acquisition phase of navy ships. This paper aims to establish numerical analysis techniques for the underwater explosion of navy ships. Doubly Asymptotic Approach (DAA) Equation of Motion (EOM) of primary shock wave and secondary bubble pulse proposed by Geers-Hunter was introduced. Assuming a non-compressive fluid, reference solution of the DAA EOM of Geers-Hunter using Runge-Kutta method was derived for the secondary bubble pulse phase with an assumed charge conditions. Convergence analyses to determine fluid element size were performed, suggesting that the minimum fluid element size for underwater explosion analysis was 0.1 m. The spherical and cylindrical fluid domains were found to be appropriate for the underwater explosion analyses from the fluid domain shape study. Because the element size of 0.1 m was too small to be applied to the actual navy ships, a very slender beam with the square solid section was selected for the study of fluid domain existence effect. The two underwater explosion models with/without fluid domain provided very similar results in terms of the displacement and stress processes.

Sonoluminescence Characteristics from Submicron Size bubbles (마이크로 이하 기포로부터의 소노루미네센스 특성)

  • Byun, Ki-Taek;Karng, Sarng-Woo;Kim, Ki-Young;kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1201-1206
    • /
    • 2004
  • Sonoluminescence (SL) characteristics such as pulse shape, radiance and spectrum radiance from submicron bubbles were investigated. In this study, a set of analytical solutions of the Navier-Stokes equations for the gas inside bubble and equations obtained from mass, momentum and energy equations for the liquid layer adjacent the bubble wall were used to estimate the gas temperature and pressure at the collapse point, which are crucial parameters to determine the SL characteristics. Heat transfer inside the gas bubble as well as at the liquid boundary layer, which was not considered in the most of previous studies on the sonoluminescence was taken it into account in the calculation of the temperature distribution inside the bubble. It was found that bremsstrahlung is a very possible mechanism of the light emission from either micron or submicron bubbles. It was also found that the peak temperature exceeding $10^{6}$ K in the submicron bubble driven at 1 MHz and 4 atm may be due to the rapid change of the bubble wall acceleration near the collapse point rather than shock formation.

  • PDF

Primary Radiation Force to Ultrasound Contrast Agents in Propagating and Standing Acoustic Field

  • Seo, Jong-Bum
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1E
    • /
    • pp.1-8
    • /
    • 2009
  • Primary radiation force on ultrasound contrast agents (UCA) in a propagating and standing acoustic field was explored. A specific ultrasound contrast agent $Albunex^{(R)}$ and $Optison^{(R)}$ were chosen for simulation. The model was developed based on a shelled bubble model proposed by Church. The numerical simulation suggests that bubble translational motion is more significant in therapeutic ultrasound due to higher intensity and long pulse duration. Even a single cycle of a propagating wave of 4 MPa at 1 MHz can cause a bubble translational motion of greater than $1{\mu}m$ which is approximately one tenth of capillary. Hence, UCA characteristics can be significantly changed in therapeutic ultrasound without rapid bubble collapses.