• Title/Summary/Keyword: Bubble hydrodynamic parameters

Search Result 7, Processing Time 0.018 seconds

Comparative Study of Mass Transfer and Bubble Hydrodynamic Parameters in Bubble Column Reactor: Physical Configurations and Operating Conditions

  • Sastaravet, Prajak;Chuenchaem, Chomthisa;Thaphet, Nawaporn;Chawaloesphonsiya, Nattawin;Painmanakul, Pisut
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.345-354
    • /
    • 2014
  • In this paper, effects of physical configurations and operating conditions on bubble column performance were analyzed in terms of bubble hydrodynamic and mass transfer parameters. Bubble column with 3 different dimensions and 7 gas diffusers (single / multiple orifice and rigid / flexible orifice) were applied. High speed camera and image analysis program were used for analyzing the bubble hydrodynamic parameters. The local liquid-side mass transfer coefficient ($k_L$) was estimated from the volumetric mass transfer coefficient ($k_La$) and the interfacial area (a), which was deduced from the bubble diameter ($D_B$) and the terminal bubble rising velocity ($U_B$). The result showed that the values of kLa and a increased with the superficial gas velocity (Vg) and the size of bubble column. Influences of gas diffuser physical property (orifice size, thickness and orifice number) can be proven on the generated bubble size and the mass transfer performance in bubble column. Concerning the variation of $k_L$ coefficients with bubble size, 3 zones (Zone A, B and C) can be observed. For Zone A and Zone C, a good agreement between the experimental and the predicted $K_L$ coefficients was obtained (average difference of ${\pm}15%$), whereas the inaccuracy result (of ${\pm}40%$) was found in Zone B. To enhance the high $k_La$ coefficient and absorption efficiency in bubble column, it was unnecessary to generate numerous fine bubbles at high superficial gas velocity since it causes high power consumption with the great decrease of $k_L$ coefficients.

Effects of an Electric Field on the Dynamic Characteristics of Bubbles in Nucleate Boiling (핵비등에서 기포의 동특성에 대한 전기장의 효과)

  • 권영철;장근선;권정태;김무환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.963-971
    • /
    • 2000
  • In order to investigate the effects of an electric field on EHD(Electro-hydrodynamic) nucleate boiling hat transfer characteristics in a nonuniform electric field under saturated pool boiling, the basic study has been performed experimentally. In the present study, the working fluid is R-113 and the plate-wire electrode system is used to generate a steep electric field gradient. Boiling parameters are investigated by using a high speed camera. The electric field distribution around a wire is obtained to understand the effect of an electric field on bubble departure/movement. The experimental results show EHD effects are much more considerable when the applied voltage increases. Bubbles depart away from the heated wire in radial direction. It is confirmed that the mechanisms of EHD nucleate boiling are closely connected with the dynamic behavior of bubbles. The boiling parameters are significantly changed by the electric field strength. With increasing applied voltages, the bubble size decreases and the nucleation site density, bubble velocity and bubble frequency increase.

  • PDF

Study of different flexible aeration tube diffusers: Characterization and oxygen transfer performance

  • Hongprasith, Narapong;Dolkittikul, Natchanok;Apiboonsuwan, Kamolnapach;Pungrasmi, Wiboonluk;Painmanakul, Pisut
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.233-240
    • /
    • 2016
  • The research aims to study the different flexible rubber tube diffusers used in urban wastewater treatment processes and aquaculture systems. The experiment was conducted in small-scale aeration tank with different physical properties of the tubes that were used as aerators. The volumetric mass transfer coefficient ($k_La$), oxygen transfer efficiency (OTE) and aeration efficiency (AE) were measured and determined to compare the diffusers. Moreover, the bubble hydrodynamic parameters were analyzed in terms of bubble diameter ($d_B$) and rising velocity ($U_B$) by a high speed camera (2,000 frames/s). Then the interfacial area (a) and liquid-side mass transfer coefficient ($k_L$) can be calculated. The physical properties (tube wall thickness, tensile strength, orifice size, hardness and elongation) have been proven to be the key factor that controls the performance (kLa and OTE). The effects of hardness and elongation on bubble formation, orifice size and a-area were clearly proved. It is not necessary to generate too much fine bubbles to increase the a-area: this relates to high power consumption and the decrease of the kL. Finally, the wall thickness, elongation and hardness associated of the flexible tube diffuser (tube No. 12) were concluded, to be the suitable properties for practically producing, in this research.

Thermo-Hydrodynamic Behaviors of Open Channel Flow Inside A Multi-Stage Flash Evaporator (다단 후래시 증발장치내 개수로 유동의 열.수력학적 거동)

  • 설광원;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.702-715
    • /
    • 1990
  • This paper describes behaviors of two-phase open channel flow inside the flash chamber of a horizontal Multi-Stage-Flash evaporator numerically along with the experimental observations. Bubble trajectories and the velocity and temperature distributions of the liquid phase were predicted by using the particle-source-in-cell(PSI-Cell) method with the appropriate bubble motion/growth equations. Size and number of bubble nuclei embedded in the incoming liquid(brine) were taken into account as important parameters in addition to the conventional ones such as the velocity, degree of inlet superheat, inlet opening height, and the liquid level. Bubble motions, which are unsteady, appeared to be mostly determined by the buoyancy and the drag forces. The calculations, though a number of simplifying assumptions were made, reasonably simulated the hydrodynamic behaviors of the two-phase horizontal stream observed in the experiments. The simulated temperature distributions also agreed fairly well with the other's measurements. Non-equilibrium allownaces, evaluated from the simulated temperature distributions, were within the range of those obtained from the existing correlations, and reduced with the increases of the number and size of incoming bubble nuclei due to vigorous flashing.

Analysis of Hydrodynamic Similarity of Pressurized Three-Phase Slurry Bubble Column for its Design and Scale-up (가압 삼상슬러리 기포탑의 설계 및 Scale-up을 위한 수력학적 Similarity 해석)

  • Seo, Myung Jae;Lim, Dae Ho;Jin, Hae Ryong;Kang, Yong;Jung, Heon;Lee, Ho Tae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.720-726
    • /
    • 2009
  • Hydrodynamic similarity was investigated in pressurized three-phase slurry bubble columns by selecting the bubble holdup and pressure drop as objective functions, for the effective design and scale-up of it. In addition, effects of operating variables on the bubble holdup with variation of column diameter were also analyzed. Gas velocity($U_G$), viscosity(${\mu}_{SL,eff}$) and surface tension(${\rho}_{SL}$) of slurry phase, density difference between the slurry and gas phases(${\rho}_{SL}-{\rho}_G$) depending on the operating pressure, pressure drop per unit length(${\Delta}P/L$), column diameter(D) and gravitational acceleration(g) were chosen as governing parameters in determining the bubble holdup and pressure drop in the column. From the dimensional analysis, four kinds of dimensionless groups were derived from the 7 parameters and 4 fundamental dimensions. Effects of dimensionless groups such as Reynolds, Froude and Weber numbers on the bubble holdup in the column were discussed. The pressure drop and bubble holdup could be predicted from the correlation of dimensionless groups effectively, which could be used as useful information for the design and scale-up of pressurized slurry bubble columns.

Numerical modeling of underwater explosion phenomena (수중 폭발현상에 대한 전산해석)

  • Lee Jaimin;Kuk Jeong-Hyun;Choi Kyung Young;Cho Yong Soo;Song So-young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.1-14
    • /
    • 1998
  • Underwater explosion properties for TNT, an ideal explosive, and DXD-04, a nonideal explosive, were numerically modeled with a one-dimensional Lagrangian hydrodynamic code. The equation of state parameters for detonation products for TNT and DXD-04 were obtained from the BKW code, assuming complete reaction. Burn of TNT was modeled by using the Chapman-Jouguet(CJ) volume burn technique, a programmed-burn technique, assuming instantaneous detonation reaction. Burn of DXD-04 was modeled by using the same technique and by using the reaction rate calibrated from two-dimensional steady-state detonation experiments. The calculations for TNT reproduced the experimental peak pressure of the shock wave propagating through water with an error of $3.0\%$ and the experimental oscillation period of the bubble formed of detonation products with an error of $2.3\%$. For DXD-04, the CJ volume burn technique could not reproduce the experimental observations. When the reaction rate calibrated from two-dimensional steady-state detonation experimental data, the calculated peak pressure was slightly higher by $7.3\%$ than the experimental data, but the calculated shock profile was in good agreement. The bubble period was reproduced with an error of $1.8\%$. These results demonstrated that underwater explosion properties for an ideal explosive can be predicted by using a programmed burn technique, and that, however, those for a nonideal explosive can be predicted only when a well-calibrated reaction rate is used.

  • PDF

Study of hydrodynamics and iodine removal by self-priming venturi scrubber

  • Jawaria Ahad;Talha Rizwan ;Amjad Farooq ;Khalid Waheed ;Masroor Ahmad ;Kamran Rasheed Qureshi ;Waseem Siddique ;Naseem Irfan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.169-179
    • /
    • 2023
  • Filtered containment system is a passive safety system that controls the over-pressurization of containment in case of a design-based accidents by venting high pressure gaseous mixture, consisting of air, steam and radioactive particulate and gases like iodine, via a scrubbing system. An indigenous lab scale facility was developed for research on iodine removal by venturi scrubber by simulating the accidental scenario. A mixture of 0.2 % sodium thiosulphate and 0.5 % sodium hydroxide, was used in scrubbing column. A modified mathematical model was presented for iodine removal in venturi scrubber. Improvement in model was made by addition of important parameters like jet penetration length, bubble rise velocity and gas holdup which were not considered previously. Experiments were performed by varying hydrodynamic parameters like liquid level height and gas flow rates to see their effect on removal efficiency of iodine. Gas holdup was also measured for various liquid level heights and gas flowrates. Removal efficiency increased with increase in liquid level height and gas flowrate up to an optimum point beyond that efficiency was decreased. Experimental results of removal efficiency were compared with the predicted results, and they were found to be in good agreement. Maximum removal efficiency of 99.8% was obtained.