• Title/Summary/Keyword: Bubble growth

Search Result 165, Processing Time 0.034 seconds

The behaviour of the internal bubbles in $CaF_{2}$ crystals during the annealing process ($CaF_{2}$ 결정의 annealing시 내부 bubbles의 거동)

  • Shim, Kwang-Bo;Park, Dai-Chul;Joo, Kyoung;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.595-599
    • /
    • 1996
  • The behaviour of the internal bubbles present in $CaF_{2}$ crystals was characterized crystallographically using a variety of the mircroscopical technique. The bubble defects were found to be aligned on the characteristic planes and directions depending on the crystals structure of the $CaF_{2}$. The AFM analysis revealed that these behaviors are related to the S-surface formation by the negative grain growth mechanism.

  • PDF

Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions

  • Murallidharan, Janani;Giustini, Giovanni;Sato, Yohei;Niceno, Bojan;Badalassi, Vittorio;Walker, Simon P.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.859-869
    • /
    • 2016
  • Component-scale modeling of boiling is predominantly based on the Eulerian-Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI) model and, within this model, the bubble is characterized using three main parameters: departure diameter (D), nucleation site density (N), and departure frequency (f). Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D) is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.

Effect of Micro Bubble on Growth of Ginseng in the shaded plastic houses and Possibility of High Quality Ginseng processing (하우스 종묘삼 재배에서 마이크로 버블(Micro bubble) 사용이 생육에 미치는 영향과 고품질 인삼 가공의 가능성)

  • Ahn, C.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.19 no.1
    • /
    • pp.109-117
    • /
    • 2017
  • In the production of organic Panax ginseng, the morphological changes were confirmed by providing general water and microbubble water, respectively. Analysis of seedling ginseng treated with general water and bubbles water revealed that many seedlings were formed in the seedling treated with bubble water, and about 15% weight increase occurred in the growing period. The growth rate of stem, leaf, and root was about 15% higher than that of all. Taken together, the growth of seedling cultivation using bubble water was about 15% overall. In order to process ginseng, the dried ginseng was higher in dry weight than the general water seedling seedlings grown in bubble water. This suggests that more processed products will be produced per unit weight at the time of producing the processed products at the farm, which can directly increase the farm income.

Numerical Study of Bubble Growth and Reversible Flow in Parallel Microchannels (병렬 미세관에서의 기포성장 및 역류현상에 관한 수치적 연구)

  • Lee, Woo-Rim;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.125-132
    • /
    • 2008
  • The bubble dynamics and heat transfer associated with nucleate boiling in parallel microchannels is studied numerically by solving the equations governing conservation of mass, momentum and energy in the liquid and vapor phases. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. Also, the reversible flow observed during flow boiling in parallel microchannels has been investigated. Based on the numerical results, the effects of contact angle, wall superheat and the number of channels on the bubble growth and reversible flow are quantified.

Modeling of Atomization Under Flash Boiling Conditions

  • Zeng, Yangbing;Lee, Chia-Fon
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.44-51
    • /
    • 2002
  • This paper presents an atomization model for sprays under flash boiling conditions. The atomization is represented by the secondary breakup of a bubble/droplet system, and the breakup is considered as the results of two competing mechanisms, aerodynamic force and bubble growth. The model was applied to predict the atomization of a hollow-cone spray from pintle injector under flash boiling conditions. In the regimes this study considered, sprays are atomized by bubble growth, which produces smaller SMD#s than aerodynamic forces alone. With decreasing ambient pressures, the spray thickness, fuel vaporization rate and vapor radial penetration increases, and the drop size decreases. With increasing the fuel and ambient temperatures to some extent, the effect of flash boiling and air entrainment completely change the spray pattern.

  • PDF

Numerical simulation of bubble growth and liquid flow in a bubble jet micro actuator

  • Ko, Sang-Cheol;Park, Nam-Seob
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1232-1236
    • /
    • 2014
  • Numerical models of fluid dynamics inside the micro actuator chamber and nozzle are presented. The models include ink flow from reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of refill process. Since high tapered nozzle is one of the very important parameters for overall actuator performance design. The effects of variations of nozzle thickness, diameter, and taper angles are simulated and some results are compared with the experimental results. It is found that the ink droplet ejection through the thinner and high tapered nozzle is more steady, fast, and robust.

An Experimental Study on Bubble Growth and Temperature Change on Microheater (마이크로 히터에서의 기포성장과 온도변화에 관한 실험적 연구)

  • Ko, Seung-Hyun;Kim, Ho-Young;Kim, Shin-Kyu;Chang, Young-Soo;Lee, Yoon-Pyo;Kim, Young-Chan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1010-1015
    • /
    • 2003
  • Bubble growth on microheater has been experimentally investigated in this study. The experiment was performed using platinum microheaters having dimensions of 300 ${\mu}m$ or 50 ${\mu}m$ in length, 20 ${\mu}m$ or 5 ${\mu}m$ in width, and $0.2{\pm}0.01$ ${\mu}m$ in thickness. A high speed video camera was used to observe bubble growth at 2,000 frames per second. Microheater temperature was measured at the rate of 300 Hz. with a data acquisition system. Bubble nucleation frequency increased with working fluid temperature. Although the slope of temperature drop was similar in all cases, the magnitude of temperature drop was different. The temperature profiles and the high speed camera images were combined to explain temperature drop.

  • PDF

Numerical analysis of liquid flow characteristics according to the design parameters of a bubble jet microactuator (마이크로 엑츄에이터의 설계변수에 따른 유동특성 해석)

  • Ko, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.605-612
    • /
    • 2016
  • A numerical analysis was performed on the effect of the design parameters of a bubble jet type microactuator on its liquid flow characteristics. The numerical models included the ink flow from the reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of the refilling process. Because the bubble behavior is a very important parameter for the overall actuator performance, the bubble growth and collapse phenomena in an open pool were simulated in the present study. The drop ejection and refill process were numerically predicted for various geometries of the nozzle, chamber, and restrictor of the bubble jet microactuator. The numerical results from varying the design parameters can help with predicting the performance and optimizing the design of a microactuator.

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF