• Title/Summary/Keyword: Bubble collecting

Search Result 6, Processing Time 0.021 seconds

Study on Bubble Collecting Section of Cavitation Tunnel for Ventilated Supercavitation Experiments (환기 초공동 실험을 위한 캐비테이션 터널 기포 포집부 연구)

  • Paik, Bu-Geun;Park, Il-Ryong;Kim, Ki-Sup;Lee, Kurnchul;Kim, Min-Jae;Kim, Kyoung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.300-306
    • /
    • 2016
  • The gas ventilated by supercavitation splits into smaller bubbles and follows the water passage of the cavitation tunnel. The bubbles quickly return to the test section by rather high speed flow, and interrupt the observation of the supercavitation. To secure clear observation in the test section, the bubble collecting section(settling chamber) of large volume is prepared to collect bubbles in the water passage ahead of the test section. The bubble collecting section should provide enough buoyancy effect to the bubbles for proper bubble collecting. However, rather high-speed oncoming flow produces non-uniform velocity distribution and deteriorates buoyancy effect in the bubble collecting section. In the present study, the bubble collecting space and three porous plates are designed and analyzed through numerical methods, and the bubble collecting function is experimentally validated by 1/10-scaled model in terms of the formation of uniformly low velocity distribution in the bubble collecting section.

Analysis of Flow Field around Multiple Fluid Spheres in the Low Knudsen Number Region (저 누드센 영역에서 다중 유체구 주위의 유동장 해석)

  • 정창훈;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.733-743
    • /
    • 2003
  • The flow field in multiple fluid sphere systems was studied analytically. The expanded zero vorticity cell model based on Kuwabara's theory (1959) was applied and the effects of gas slippage at the collecting surface were considered. Also, the solid sphere system was extended to fluid sphere including the effects of the induced internal circulation inside the liquid droplet spheres or gas bubble systems. As a result, the obtained analytic solution was converged to the existing solutions for flow field around solid and bubble sphere systems with proper boundary conditions. Based on the resolved flow field, the terminal velocity around the collecting fluid spheres was obtained. Subsequently, this study evaluated the most general solution for flow field around the multiple fluid sphere systems. The obtained flow field in multiple fluid sphere could be used as a fundamental consideration of wet scrubber design and devices for removing particles by fluid-fluid interactions.

Particle Separation Characteristics and Harvesting Efficiency of Spirulina platensis Using Micro-bubble (미세기포를 이용한 Spirulina platensis의 입자 부상분리 특성 및 수거효율)

  • Gwak, Gyu-Dong;Kim, Mi-Sug;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.621-629
    • /
    • 2013
  • Since algae had been issued an environmental problem, water blooms, deepened due to increase of retention water basin in Korea as well as a biomass resource for producing biofuel, this study conducted a series of experiments for Spirulina platensis using the flotation process with micro-bubble. To elevate utilization of collected-algae, this study focused on omitting or minimizing coagulant's doses as changing a cultivation period and condition affected on physical property change of algae. Two coagulants, PAC and Chitosan, were used to test the collecting rate of algae and the result found no difference between two rates. For flotation experiments without adding the coagulant, dried algae weight (passing 14 days after cultivation for 20 days) detected high separation efficiency 98.2 % and it (passing 7 days after long-term cultivation for 28 days) presented good separation efficiency 91.9 %. Chlorophyll's separation efficiency showed a similar tendency with the case of the dried algae weight. In endogeny conditions, a light source and a carbon source were not considerably affected on the flotation separation efficiency. Thus, this study confirms that algae biomass may be collected without the coagulant during the endogeny condition period after enough cultivation time, 3 weeks.

Comparison of the Efficiency between a Remodeled Bubble Generating Pumps for an Aquarium Fish and the Existed Commercial Air Sampler for the Sampling of Ambient Air Asbestos (공기 중 석면농도 분석시 관상어용 기포발생기를 개조한 장치와 기존의 상업용 시료 채취기와의 성능 비교)

  • Jang, Bong-Ki;Tak, Hyun-Wook;Song, Su-Jin;Jo, Bong-Hyun;Kim, Yeong-Ji;Son, Bu-Soon;Lee, Jong-Wha
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.492-500
    • /
    • 2014
  • Objectives: The purpose of this study is to estimate the applicability of regional sample collection of environmental samples. The concentration of asbestos fibers were analyzed with two devices. One was an existing commercial air sampling pump that has been proved to be accurate and exact, and the other is a remodeled pump for sample collection which was made from an electric bubble generator originally designed for aquarium fish. Samples were collected with the two devices under the same environmental conditions and collection equipment. A comparative analysis of the concentration of ambient asbestos fiber was then performed. Methods: Based on previous research, six farmhouses with asbestos fiber slate roofs known to have high concentrations of asbestos fiber were selected. Using the existing commercial air sampling pump and the remodeled electric bubble generator, four to seven samples were collected each day one meter downwind from the edge of the slate roof at high volume (about 4 L/min) and low volume (about 1.4 L/min). The analyzer responsible for sample quality control of asbestos fibers counted the number of asbestos fibers with a phase microscope. Results: The rates of flow change of the existed sampler and the remodeled pump at high volume were 0.82% and 0.17%, respectively. The rates of flow change at low volume were 3.83% and 1.09%, but there was not significant difference. The rates of flow change are within the error range (${\pm}5%$) of OSHA analyzing methods. For the high volume sampler, the average asbestos fiber concentration in the air collected by the existed sampler is 6.270 fibers/L and for the remodeled one 5.527 fibers/L, not a significant difference. For the low volume sampler, the average asbestos fiber concentration in the air collected by the existed sampler is 7.755 fibers/L and for the remodeled one 7.706 fibers/L, not a significant difference. The total area of the slate roof of the targeted farmhouse has an effect on the concentration of asbestos fibers in the air from the existing pump and the remodeled one (p<0.01). Conclusions: The sampling function between the existing commercial pump and the remodeled one shows little difference. Therefore, the remodeled pump is considered a pump with a good availability for collecting ambient air asbestos samples.

Evaluation of Washing Efficiency of Collective PM by Electrostatic Precipitator in Subway Station Using Nano Bubble (나노버블을 이용한 지하철용 전기집진기 포집먼지에 대한 세척효율 평가)

  • Lee, Hyung-Don;Lee, Seung-Hwan;Park, Chan-gyu
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • Air pollutants in a subway are complexly caused by outdoor factors such as ventilating opening and indoor factors such as the movement of passengers on the subway. According to recent research results, most of the air pollutants generated in subway tunnels and stations are caused by indoor variables such as train movement. To control air pollutants such as particulate matter (PM), a prevention facility such as the electrostatic precipitator (EP) or bag filter collector was required in a subway station. In particular, the PM removed by the EP must be kept clean continuously to manage PM effectively. Therefore, a nano-bubbling washing system was developed in this study to clean a contaminated collecting plate in an EP at the main subway tunnel in Seoul. Removal efficiency compared with normal water and nano-bubbling water was likewise studied. As a result, the washing efficiency of collective PM increased in accordance with the increasing of injection pressure, with nano bubbling washing being 130.8% higher than tap water. According to increase in washing times, the maximum washing efficiency was 143.1% higher than tap water, but suitable washing times were less than 3 times. According to the results of the washing efficiency by variation of residence time, it was confirmed that the maximum residence time of nano-bubble water was maintained within 5 minutes.

Fundamental Studies for Ventilated Supercavitation Experiments in New High-speed Cavitation Tunnel (신조된 고속 캐비테이션 터널에서 환기 초공동 실험 수행을 위한 기초 연구)

  • Paik, Bu-Geun;Kim, Min-Jae;Jung, Young-Rae;Lee, Seung-Jae;Kim, Kyoung-Youl;Ahn, Jong-Woo;Seol, Han-Shin;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.330-340
    • /
    • 2018
  • In the present works, the High-speed Cavitation Tunnel (HCT) has been designed and manufactured to have the large test section to conduct various supercavitation experiments. The large amount of air ventilated behind a cavitator produces lots of tiny bubbles, which prevent clear observation of supercavitation at the test section. To collect small bubbles effectively, a bubble collecting section of large volume is equipped upstream of the test section. HCT has the test section dimension of $0.3^H{\times}0.3^W{\times}3.0^L\;m^3$ and provides maximum flow speed of 20.4 m/s at the test section. The blockage and Froude effects on the ventilated supercavitation are investigated successfully at the test section. The basic studies such as the supercavitation evolution, drag measurements and cavity shape extraction with air flow rate are also carried out in HCT.