• 제목/요약/키워드: Bubble Shock

검색결과 51건 처리시간 0.018초

캐비테이션 기포와 충격파의 간섭에 관한 연구 (A NUMERICAL STUDY ON THE CAVITATION BUBBLE-SHOCK INTERACTION)

  • 신병록
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.185-187
    • /
    • 2009
  • A density based method with homogeneous cavitation model to investigate cavitation-bubble collapsing behavior is proposed and applied to bubble-shock interaction problems. By applying this method, cylindrical bubbles located in the liquid and incident liquid shock wave are computed. Bubble collapsing behavior, shock-bubble interaction and shock transmission/reflection pattern are investigated.

  • PDF

NUMERICAL INVESTIGATION OF INTERACTION BEHAVIOR BETWEEN CAVITATION BUBBLE AND SHOCK WAVE

  • Shin, Byeong-Rog;An, Young-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.215-220
    • /
    • 2008
  • A numerical method for gas-liquid two-phase flow is applied to solve shock-bubble interaction problems. The present method employs a finite-difference Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. By this method, a Riemann problem for shock tube was computed for validation. Then, shock-bubble interaction problems between cylindrical bubbles located in the liquid and incident liquid shock wave are computed.

  • PDF

NUMERICAL INVESTIGATION OF INTERACTION BEHAVIOR BETWEEN CAVITATION BUBBLE AND SHOCK WAVE

  • Shin, Byeong-Rog;An, Young-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.215-220
    • /
    • 2008
  • A numerical method for gas-liquid two-phase flow is applied to solve shock-bubble interaction problems. The present method employs a finite-difference Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. By this method, a Riemann problem for shock tube was computed for validation. Then, shock-bubble interaction problems between cylindrical bubbles located in the liquid and incident liquid shock wave are computed.

  • PDF

수중폭발 충격파와 가스구체 압력파를 함께 고려한 구조물의 동적응답해석 (Integrated Structural Dynamic Response Analysis considering the UNDEX Shock Wave and Gas Bubble Pulse)

  • 이상갑;권정일;정정훈
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.148-153
    • /
    • 2007
  • Two typical impact loadings, shock wave and gas bubble pulse, due to UNDEX(UNDerwater EXplosion), should be considered together for the closest response analysis of structure subjected to UNDEX to a reality. Since these two impact loadings have different response time bands, however, their response characteristics of structure are different from each other. It is impossible to consider these effectively under the current computational environment and the mathematical model has not yet been developed. Whereas Hicks model approximates the fluid-structure interaction due to gas bubble pulse as virtual mass effect, treating the flow by the response of gas bubble after shock wave as incompressible ideal fluid contrary to the compressible flow due to shock wave, Geers-Hunter model could make the closest response analysis of structure under UNDEX to a real one as a mathematical model considering the fluid-structure interaction due to shock wave and gas bubble pulse together using acoustic wave theory and DAA(Doubly Asymptotic Approximation). In this study, the application and effectiveness of integrated dynamic response analysis of submerged structure was examined with the analysis of the shock wave and gas bubble pulse together.

RE-ACCELERATION OF FOSSIL ELECTRONS BY SHOCKS ENCOUNTERING HOT BUBBLES IN THE OUTSKIRTS OF GALAXY CLUSTERS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제51권6호
    • /
    • pp.185-195
    • /
    • 2018
  • Galaxy clusters are known to host many active galaxies (AGNs) with radio jets, which could expand to form radio bubbles with relativistic electrons in the intracluster medium (ICM). It has been suggested that fossil relativistic electrons contained in remnant bubbles from extinct radio galaxies can be re-accelerated to radio-emitting energies by merger-driven shocks via diffusive shock acceleration (DSA), leading to the birth of radio relics detected in clusters. In this study we assume that such bubble consist primarily of thermal gas entrained from the surrounding medium and dynamically-insignificant amounts of relativistic electrons. We also consider several realistic models for magnetic fields in the cluster outskirts, including the ICM field that scales with the gas density as $B_{ICM}{\infty}n^{0.5}_{ICM}$. Then we perform time-dependent DSA simulations of a spherical shock that runs into a lower-density but higher-temperature bubble with the ratio $n_b/n_{ICM}{\approx}T_{ICM}/T_b{\approx}0.5$. We find that inside the bubble the shock speed increases by about 20 %, but the Mach number decreases by about 15% in the case under consideration. In this re-acceleration model, the observed properties of a radio relic such as radio flux, spectral index, and integrated spectrum would be governed mainly by the presence of seed relativistic electrons and the magnetic field profile as well as shock dynamics. Thus it is crucial to understand how fossil electrons are deposited by AGNs in the ICM and how the downstream magnetic field evolves behind the shock in detailed modeling of radio relics.

ANALYTICAL AND NUMERICAL STUDY OF MODE INTERACTIONS IN SHOCK-INDUCED INTERFACIAL INSTABILITY

  • Sohn, Sung-Ik
    • 대한수학회논문집
    • /
    • 제15권1호
    • /
    • pp.155-172
    • /
    • 2000
  • Mode interactions at Unstable fluid interfaces induced by a shock wave (Richtmyer-Meshkov Instability) are studied both analytically and numerically. The analytical approach is based on a potential flow model with source singularities in incompressible fluids of infinite density ratio. The potential flow model shows that a single bubble has a decaying growth rates at late time and an asymptotic constant radius. Bubble interactions, bubbles of different radii propagates with different velocities and the leading bubbles grow in size at the expense of their neighboring bubbles, are predicted by the potential flow model. This phenomenon is validated by full numerical simulations of the Richtmyer-Meshkov instability in compressible fluids for initial multi-frequency perturbations on the unstable interface.

  • PDF

충격파 차단을 위한 ER Insert의 기초 연구 (A Study of the ER Insert for Reducing the Shock Wave)

  • 김정엽;정재민;김재환;최승복;김경수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.612-618
    • /
    • 2000
  • The underwater explosion which has the high energy brings about the shock wave and the pulsating gas bubble. In general, structural vibration from the shock wave is more serious than the pulsating gas bubble. This shock wave may damage the important fragile structures and equipment in ship. This paper demonstrates that the shock wave propagating the structure can be reduced by ER inserts. The wave transmission of ER inserted beam is theoretically derived using Mead & Markus model, and the theoretical results are composed with the finite element analysis results. To experimentally verify the ER insert, ER insert in an aluminum plate is made and two piezoceramic disks are used as transmitter and receiver. Details of the experiment are addressed.

  • PDF

휘핑계수-수중폭발 가스구체 압력파 크기의 척도 (Whipping factor - a Measure of Damage Potential of an UNDEX Bubble Pulse)

  • 권정일;정정훈;이상갑
    • 대한조선학회논문집
    • /
    • 제42권6호
    • /
    • pp.637-643
    • /
    • 2005
  • A new novel Whipping Factor is proposed as a measure of the ship damage potential due to an underwater explosion bubble pulse. The factor was derived from the relationships among the charge weight, its depth and the fluid acceleration due to pulsating gas bubble. From the whipping response analyses for three uniform Timoshenko beams with similar characteristics of real naval surface ships, we have confirmed the maximum bending moment responses of beams due to whipping are almost same if the applied whipping factor is constant regardless of the charge weights and depths, which could validate the proposed whipping factor.

에어백 인플레이터의 수중폭발 특성에 대한 실험 연구 (An Experimental Study on UNDEX Characteristics of Airbag Inflators)

  • 김형준;최걸기;나양섭;박경훈;정현
    • 대한조선학회논문집
    • /
    • 제54권5호
    • /
    • pp.439-446
    • /
    • 2017
  • This paper deals with an experimental study of the dynamics of an underwater bubbles and shock waves, generated by rapid underwater release of highly compressed gas. Aribag inflators, which are used for automobile's airbag system, are used to generate the extremely-rapid underwater gas release. Experimental studies of the complex underwater bubble dynamics as well as underwater shock wave were carried out in a specifically designed cylindrical water tank. The water tank is equipped with a high-speed camera and pressure sensors. The high-speed camera was used to capture the expansion and collapse of the gas bubble created by inflators, while pressure sensors was used to measure the underwater shock propagation and magnitudes. The experimental results were compared against the results of explosion of pentolite explosive. Several physical phenomena that has been observed and discussed, which are different from the explosive underwater explosion.

Diffuse Interface Method를 이용한 압축성 다상 유동에 관한 수치적 연구 (Numerical Study on Compressible Multiphase Flow Using Diffuse Interface Method)

  • 유영린;성홍계
    • 항공우주시스템공학회지
    • /
    • 제12권2호
    • /
    • pp.15-22
    • /
    • 2018
  • 7개의 방정식으로 구성된 DIM을 사용하여 압축성 다상 유동에 대해 연구하였다. 액체와 기체의 상세한 경계면 유동 구조를 얻기 위해 5 차의 MLP와 변형된 HLLC 근사 리만 해법을 포함하는 고차 수치기법이 구현되었다. 수치 방법의 유효성 검증을 위해 물과 공기로 구성된 다양한 1차원 충격관 문제를 해석하였고, 불연속면에 대해 뛰어난 해상도를 얻을 수 있었다. 마하수 1.22의 충격파 조건에서의 2차원 공기-헬륨 기포에 대한 충격파 상호 작용을 수치 해석하였고, 충격파 현상들을 잘 모사하였으며 실험결과와 비교 검증하였다.