• Title/Summary/Keyword: Bubble Shape

Search Result 139, Processing Time 0.025 seconds

A Study of Heat Transfer Phenomena due to a Formed Gas Bubble under Heat-Conduction Domain in A Closed Square Cavity (TLC 를 이용한 사각공동내의 열전도 영역에 기포의 형성으로 인한 열전달 현상 구명)

  • Eom, Young-Kyoon;You, Jae-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.85-89
    • /
    • 2003
  • In a closed square cavity filled with a liquid, a cooled the upper horizontal wall and a heated the lower horizontal wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In such case the flow phenomena near an air bubble under a cooled horizontal wall were investigated. The temperature and the flow fields were studied by using the Thermo-sensitive Liquid-Crystal and the image processing. The qualitative analysis for the temperature and the flow fields were carried out by applying the image processing technique to the original data. Injecting bubble at the center point of upper cooled wall, the symmetry shape of two vortexes near an air bubble was observed. The bubble size increased, the size of velocity and the magnitude of velocity increased. In spite of elapsed time, a pair of two vortexes was the unique and steady-state flow in a square cavity and wasn't induce to the other flow in the surround region.

  • PDF

A Void Fraction Measurement Technique by Single Camera and Its Application (단일 카메라를 이용한 이상유동 기포율 측정방법의 개발과 응용)

  • Choi, Dong-Whan;Yoo, Jung-Yul;Song, Jin-Ho;Sung, Jae-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.904-911
    • /
    • 2007
  • A measurement technique fur void fraction has been proposed using a time-resolved two-phase PIV system and the bubble dynamics has been investigated in gas-liquid two-phase flows. For the three-dimensional evaluation of the bubble information, both the images from the front and side views are simultaneously recorded into a high speed CCD camera by reflecting the side view image on a $45^{\circ}$ oriented mirror to be juxtaposed with the front view image. Then, a stereo-matching technique is applied to calculate the void fraction, bubble size and shape. To obtain the rising bubble velocities, the 2-frame PTV method was adopted. The present technique is applied to freely rising bubby flows in stagnant liquid. The results show that the increase of bubble flow rate gives rise to the increase of bubble size and rising velocity at first. If it goes over a certain level, the rising velocity becomes constant and the horizontal velocity grows bigger instead due to the obstruction of other bubbles.

TEM investigation of helium bubble evolution in tungsten and ZrC-strengthened tungsten at 800 and 1000℃ under 40keV He+ irradiation

  • I. Ipatova;G. Greaves;D. Terentyev;M.R. Gilbert;Y.-L. Chiu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1490-1500
    • /
    • 2024
  • Helium-induced defect nucleation and accumulation in polycrystalline W and W0.5 wt%ZrC (W0.5ZrC) were studied in-situ using the transmission electron microscopy (TEM) combined with 40 keV He+ irradiation at 800 and 1000℃ at the maximum damage level of 1 dpa. Radiation-induced dislocation loops were not observed in the current study. W0.5ZrC was found to be less susceptible to irradiation damage in terms of helium bubble formation and growth, especially at lower temperature (800 ℃) when vacancies were less mobile. The ZrC particles present in the W matrix pin the forming helium bubbles via interaction between C atom and neighbouring W atom at vacancies. This reduces the capability of helium to trap a vacancy which is required to form the bubble core and, as a consequence, delays, the bubble nucleation. At 1000 ℃, significant bubble growth occurred in both materials and all the present bubbles transitioned from spherical to faceted shape, whereas at 800 ℃, the faceted helium bubble population was dominated in W.

On the Measurement Technique of Void Fraction by Single Camera Two Phase PIV (단일 카메라 입자영상유속계를 이용한 이상유동 기포율 측정방법)

  • Choi, Dong-Whan;Sung, Jae-Yong;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1558-1563
    • /
    • 2004
  • A measurement technique for the void fraction and the bubble dynamics in gas-liquid two-phase flows has been proposed using a time-resolved two-phase PIV system. For the three-dimensional evaluation of the bubble information, both the images from the front and side views are simultaneously recorded into a high speed CCD camera by reflecting the side image into the front view with the help of a $45^{\circ}$ oriented mirror. Then, a stereo-matching technique is applied to calculate the void fraction, bubble size and shape. To obtain the rising bubble velocities, the 2-frame PTV method was applied. Consequently, the present technique shows good feasibility for the measurements of the volume fractions, mean diameters, aspect ratios and velocities of the bubbles at the three-dimensional point of view.

  • PDF

Visualization of Disruptive Bubble Behavior in Ultrasonic Fields (초음파장내 파괴적인 기포의 운동 가시화)

  • Kim, Tae-Hong;Park, Keun-Hwan;Kim, Ho-Young
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.17-19
    • /
    • 2011
  • The bubble oscillations play an important role in ultrasonic cleaning processes. In the ultrasonic cleaning of semiconductor wafers, the cleaning process often damages micro/nano scale patterns while removing contaminant particles. However, the understanding of how patterns in semiconductor wafers are damaged during ultrasonic cleaning is far from complete yet. Here, we report the observations of the motion of bubbles that induce solid wall damage under 26 kHz continuous ultrasonic waves. We classified the motions into the four types, i.e. volume motion, shape motion, splitting or jetting motion and chaotic motion. Our experimental results show that bubble oscillations get unstable and nonlinear as the ultrasonic amplitude increases, which may exert a large stress on a solid surface raising the possibility of damaging microstructures.

Cavitation inception in oil hydraulic pipeline (유압관로에서의 캐비테이션 초생)

  • 이일영;염만오;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.46-52
    • /
    • 1988
  • The cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below-1 MPa(absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. In order to interpret the experimental results on cavitation inception, the growth of a spherical bubble in viscous compressible fluid due to a stepwise pressure drop was investigated by numerical analysis, and the critical bubble radius was obtained. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised conditions about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.

  • PDF

Numerical Simulation of a Taylor Bubble Rising in a Vertical Tube (수직관에서 상승하는 Taylor 기포의 수치해석)

  • Son, Gi-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.373-380
    • /
    • 2001
  • In this study, a single Taylor bubble and a train of Taylor bubbles rising in a vertical tube were simulated numerically. A finite difference method was used to solve the mass and momentum equations for the liquid-gas region. The liquid-gas interface was captured by a level set function which is defined a signed distance from the interface. For a train of Taylor bubbles repeated periodically in space, the periodic conditions were imposed at the boundaries normal to the gravitational direction and the pressure boundary conditions were iteratively determined so that the computed flow rate should be equal to a given flow rate. Based on the numerical simulation, the calculated shape and rise velocity of a Taylor bubble were found to be in good agreement with the experimental data reported in the literature.

Cavitation Inception in Oil Hydraulic Pipeline (유압관로에서의 캐비테이션 초생)

  • 정용길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.127-130
    • /
    • 1987
  • The Cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below -1 MPa (absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. The growth of a spherical bubble in a infinite volume of viscous compressible fluid due to a stepwise pressure drop was investigated to obtain the critical bubble radius. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised condition about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.

  • PDF

An experimental study on the Vortex nozzle for generating micro-bubble by air self-suction (공기의 자가흡입에 의해 마이크로버블을 발생시키는 보텍스 노즐에 대한 실험적 연구)

  • Kwak, Gu Tae;Park, Sang Hee;Kim, Chang Su;U, Sang Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.98-104
    • /
    • 2015
  • This experiment was a study of a Vortex nozzle designed to produce micro-bubbles due To investigate air self-suction and the generation of micro-bubble by the Vortex nozzle, the dimensions of air intake region, the nozzle shape, and the nozzle exit diameter ($d_n=5,7,9.2,12.3mm$)werevaried. The air self-suction rate was ~1,000 to 2,000 cc/min at the orifice nozzle (7 mm), and ~100 and ~22 cc/min at the sector nozzles (9.2 and 12.3 mm, respectively). The most bubbles were detected in the orifice nozzle, but bubbles less than $50{\mu}m$ were found in the 12.3-mm sector nozzle. The dissolved oxygen in the tank water was much greater in Case 2 than in Case 1, at both the orifice and sector nozzles. Moreover, the reduction rate of dissolved oxygen was found to be less at the sector nozzles, than at the orifice nozzle.

Numerical Study on Taylor Bubble Rising in Pipes

  • Shin, Seung Chul;Lee, Gang Nam;Jung, Kwang Hyo;Park, Hyun Jung;Park, Il Ryong;Suh, Sung-bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.38-49
    • /
    • 2021
  • Slug flow is the most common multi-phase flow encountered in oil and gas industry. In this study, the hydrodynamic features of flow in pipes investigated numerically using computational fluid dynamic (CFD) simulations for the effect of slug flow on the vertical and bent pipeline. The compressible Reynold averaged Navier-Stokes (RANS) equation was used as the governing equation, with the volume of fluid (VOF) method to capture the outline of the bubble in a pipeline. The simulations were tested for the grid and time step convergence, and validated with the experimental and theoretical results for the main hydrodynamic characteristics of the Taylor bubble, i.e., bubble shape, terminal velocity of bubble, and the liquid film velocity. The slug flow was simulated with various air and water injection velocities in the pipeline. The simulations revealed the effect of slug flow as the pressure occurring in the wall of the pipeline. The peak pressure and pressure oscillations were observed, and those magnitudes and trends were compared with the change in air and water injection velocities. The mechanism of the peak pressures was studied in relation with the change in bubble length, and the maximum peak pressures were investigated for the different positions and velocities of the air and water in the pipeline. The pressure oscillations were investigated in comparison with the bubble length in the pipe and the oscillation was provided with the application of damping. The pressures were compared with the case of a bent pipe, and a 1.5 times higher pressures was observed due to the compression of the bubbles at the corner of the bent. These findings can be used as a basic data for further studies and designs on pipeline systems with multi-phase flow.