• 제목/요약/키워드: Bt-cotton

검색결과 7건 처리시간 0.021초

Evaluation of Bt-cotton Genotypes for Resistance to Cotton Leaf Curl Disease under High Inoculum Pressure in the Field and Using Graft Inoculation in Glasshouse

  • Akhtar, Khalid Pervaiz;Hussain, Manzoor;Hassan, Mahmood-Ul;Sarwar, Muhammad;Sarwar, Nighat
    • The Plant Pathology Journal
    • /
    • 제31권2호
    • /
    • pp.132-139
    • /
    • 2015
  • Bt-cotton germplasm, consisting of 75 genotypes was evaluated against cotton leaf curl disease (CLCuD) under high inoculum pressure in the field and using graft inoculation in glasshouse by visual symptom scoring assessments. None of the tested genotype was found disease free under both evaluation tests. Under field conditions in 2011, 3 genotypes were found resistant, 4 moderately resistant, 3 tolerant, 2 moderately susceptible and one susceptible; in 2012, 3 genotypes were tolerant, 7 moderately susceptible, 5 susceptible and 38 highly susceptible; in 2013, one was moderately susceptible and 51 were highly susceptible with varying degree of percent disease index (PDI) and severity index (SI). However, through graft evaluation in glasshouse, none of the graft inoculated plant was symptomless. All tested genotypes showed disease symptoms with SI values ranging between 5.0 and 6.0, and latent period between 12 and 14 days. Of the 75 genotypes evaluated using graft inoculation, 11 were found susceptible with SI values of 5.0 to 5.4 while remaining 64 were highly susceptible with SI values of 5.5 to 6.0. Inoculated plants of all tested genotypes exhibited severe disease symptoms within 10 days after the appearance of initial symptoms. No reduction in SI value was observed until the end of the experiment i.e., 90 days after grafting. Information generated under the present study clearly demonstrates that no sources of resistance to CLCuD are available among the tested Bt-cotton genotypes. So, a breeding programme is needed to introgress the CLCuD-resistance from other resistant sources to agronomically suitable Bt-cotton genotypes.

Comparative Performance of Broilers Fed Diets Containing Processed Meals of BT, Parental Non-BT Line or Commercial Cotton Seeds

  • Elangovan, A.V.;Mandal, A.B.;Johri, T.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권1호
    • /
    • pp.57-62
    • /
    • 2003
  • An effort was made to assess comparative production performance in broiler chickens fed diets containing solvent extracted cottonseed meal (CSM) processed from BT and Parental Non-BT lines. Processed meal of national check and commercial produce cottonseeds were also used for comparison. The free gossypol contents were 0.02, 0.02, 0.44 and 0.03% in meals of BT, Parental Non-BT, national check and commercial produce cottonseeds, respectively. Day-old broiler chicks (n=243) were divided to 27 groups of 9 each. Nine dietary treatments (iso-nitrogenous, 23% CP and iso-caloric, 2,800 kcal ME/kg) were formulated viz., D1 (control, soybean meal-SBM based), D2 and D3 (BT CSM at 10% of diet with and without additional iron), D4 and D5 (non-BT CSM with and without additional iron), D6 and D7 (national check CSM with or without additional iron), and D8 and D9 (commercial produce CSM with or without additional iron at 2 ppm for every 1 ppm of free gossypol, respectively). Each dietary treatment was offered to three replicated groups up to 6 weeks of age. At the end of 6 weeks of age, 10 birds were taken out randomly from each treatment and were sacrificed to study carcass traits, organs' yield and histo-pathological changes in vital organs. The broiler chickens received CSM processed from BT (D2, 1,753 g and D3, 1,638 g) and Parental Non-BT (D4, 1,653 g and D5, 1,687 g) with or without additional Fe grew at same rate as observed in soybean meal (solvent ext.) based diet (D1, 1,676 g). The feed intake and feed conversion efficiency (feed: gain) in these dietary treatments (BT, non-BT line based diets) also did not differ significantly (p>0.05) from control diet. Similar observation was also observed in dietary treatments (D8 and D9) containing solvent extracted cottonseed meal of commercial produce origin. However, a decrease (p<0.05) in body weight gain and feed intake was observed in D6 containing national check CSM with high gossypol content. Addition of Fe in the diet (D7) improved (p<0.05) feed intake and weight gain but not to the extent as observed in diets containing BT, parental non-BT, and commercial produce CSM or control. However, any type of CSM did not affect feed conversion efficiency when fed with or without additional iron. The carcass characteristics in terms of dressing percentage, liver weight and heart weight was not significantly (p>0.05) different between the treatments. The eviscerated yields emanated from diets containing either BT, non-BT or commercial produce were statistically similar to control. However, eviscerated yield of broilers fed national check CSM with or without iron supplementation was lower (p<0.05) than BT cotton with Fe supplementation and commercial produce CSM. The study envisaged that BT, parental non-BT and commercial produce solvent extracted cottonseed meal can be included at 10% in soybean meal based broiler diet replacing soybean meal and rice bran without additional iron.

Molecular Characterization of a Novel Vegetative Insecticidal Protein from Bacillus thuringiensis Effective Against Sap-Sucking Insect Pest

  • Sattar, Sampurna;Maiti, Mrinal K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권9호
    • /
    • pp.937-946
    • /
    • 2011
  • Several isolates of Bacillus thuringiensis (Bt) were screened for the vegetative insecticidal protein (Vip) effective against sap-sucking insect pests. Screening results were based on $LC_{50}$ values against cotton aphid (Aphis gossypii), one of the dangerous pests of various crop plants including cotton. Among the isolates, the Bt#BREF24 showed promising results, and upon purification the aphidicidal protein was recognized as a binary toxin. One of the components of this binary toxin was identified by peptide sequencing to be a homolog of Vip2A that has been reported previously in other Bacillus spp. Vip2 belongs to the binary toxin group Vip1-Vip2, and is responsible for the enzymatic activity; and Vip1 is the translocation and receptor binding protein. The two genes encoding the corresponding proteins of the binary toxin, designated as vip2Ae and vip1Ae, were cloned from the Bt#BREF24, sequenced, and heterologously expressed in Escherichia coli. Aphid feeding assay with the recombinant proteins confirmed that these proteins are indeed the two components of the binary toxins, and the presence of both partners is essential for the activity. Aphid specificity of the binary toxin was further verified by ligand blotting experiment, which identified an ~50 kDa receptor in the brush border membrane vesicles of the cotton aphids only, but not in the lepidopteran insects. Our finding holds a promise of its use in future as a candidate gene for developing transgenic crop plants tolerant against sap-sucking insect pests.

Copying and Manipulating Nature: Innovation for Textile Materials

  • Rossbach, Volker;Patanathabutr, Pajaera;Wichitwechkarn, Jesdawan
    • Fibers and Polymers
    • /
    • 제4권1호
    • /
    • pp.8-14
    • /
    • 2003
  • This paper considers the potential impact of biological approaches such as bio-copying (biomimetics) and biomanipulating (e.g. genetic engineering) on future developments in the field of textiles and, in particular, fibres. If analytical tools for studying biological systems combined with those of materials science are further developed, and higher efficiency and reproducibility of genetic engineering technology can be achieved, the potential for the copying and manipulation of nature for textile innovations will be immense. The present state for both fields is described with examples such as touch and close fastener, structurally coloured fibres, the Lotus of lect (for bio-copying), as well as herbicide tolerant cotton, insecticide resistant cotton (Bt cotton), cotton polyester bicomponent fibres, genetically engineered silkworm and silk protein, and spider fibres. (for genetic engineering).

Susceptibility of Anthonomus grandis (Cotton Boll Weevil) and Spodoptera frugiperda (Fall Armyworm) to a Cry1Ia-type Toxin from a Brazilian Bacillus thuringiensis Strain

  • Grossi-De-Sa, Maria Fatima;De Magalhaes, Mariana Quezado;Silva, Marilia Santos;Silva, Shirley Margareth.Buffon;Dias, Simoni Campos;Nakasu, Erich Yukio Tempel;Brunetta, Patricia Sanglard Felipe;Oliveira, Gustavo Ramos;De Oliveira Neto, Osmundo Brilhante;De Oliveira, Raquel Sampaio;Soares, Luis Henrique Barros;Ayub, Marco Antonio Zachia;Siqueira, Herbert Alvaro Abreu;Figueira, Edson L.Z.
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.773-782
    • /
    • 2007
  • Different isolates of the soil bacterium Bacillus thuringiensis produce multiple crystal (Cry) proteins toxic to a variety of insects, nematodes and protozoans. These insecticidal Cry toxins are known to be active against specific insect orders, being harmless to mammals, birds, amphibians, and reptiles. Due to these characteristics, genes encoding several Cry toxins have been engineered in order to be expressed by a variety of crop plants to control insectpests. The cotton boll weevil, Anthonomus grandis, and the fall armyworm, Spodoptera frugiperda, are the major economically devastating pests of cotton crop in Brazil, causing severe losses, mainly due to their endophytic habit, which results in damages to the cotton boll and floral bud structures. A cry1Ia-type gene, designated cry1Ia12, was isolated and cloned from the Bt S811 strain. Nucleotide sequencing of the cry1Ia12 gene revealed an open reading frame of 2160 bp, encoding a protein of 719 amino acid residues in length, with a predicted molecular mass of 81 kDa. The amino acid sequence of Cry1Ia12 is 99% identical to the known Cry1Ia proteins and differs from them only in one or two amino acid residues positioned along the three domains involved in the insecticidal activity of the toxin. The recombinant Cry1Ia12 protein, corresponding to the cry1Ia12 gene expressed in Escherichia coli cells, showed moderate toxicity towards first instar larvae of both cotton boll weevil and fall armyworm. The highest concentration of the recombinant Cry1Ia12 tested to achieve the maximum toxicities against cotton boll weevil larvae and fall armyworm larvae were 230 ${\mu}g/mL$ and 5 ${\mu}g/mL$, respectively. The herein demonstrated insecticidal activity of the recombinant Cry1Ia12 toxin against cotton boll weevil and fall armyworm larvae opens promising perspectives for the genetic engineering of cotton crop resistant to both these devastating pests in Brazil.

Bacillus thuringiensis as a Specific, Safe, and Effective Tool for Insect Pest Control

  • Roh, Jong-Yul;Choi, Jae-Young;Li, Ming-Sung;Jin, Byung-Rae;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.547-559
    • /
    • 2007
  • Bacillus thuringiensis (Bt) was first described by Berliner [10] when he isolated a Bacillus species from the Mediterranean flour moth, Anagasta kuehniella, and named it after the province Thuringia in Germany where the infected moth was found. Although this was the first description under the name B. thuringiensis, it was not the first isolation. In 1901, a Japanese biologist, Ishiwata Shigetane, discovered a previously undescribed bacterium as the causative agent of a disease afflicting silkworms. Bt was originally considered a risk for silkworm rearing but it has become the heart of microbial insect control. The earliest commercial production began in France in 1938, under the name Sporeine [72]. A resurgence of interest in Bt has been attributed to Edward Steinhaus [105], who obtained a culture in 1942 and attracted attention to the potential of Bt through his subsequent studies. In 1956, T. Angus [3] demonstrated that the crystalline protein inclusions formed in the course of sporulation were responsible for the insecticidal action of Bt. By the early 1980's, Gonzalez et al. [48] revealed that the genes coding for crystal proteins were localized on transmissible plasmids, using a plasmid curing technique, and Schnepf and Whiteley [103] first cloned and characterized the genes coding for crystal proteins that had toxicity to larvae of the tobacco hornworm, from plasmid DNA of Bt subsp. kurstaki HD-1. This first cloning was followed quickly by the cloning of many other cry genes and eventually led to the development of Bt transgenic plants. In the 1980s, several scientists successively demonstrated that plants can be genetically engineered, and finally, Bt cotton reached the market in 1996 [104].

의류소재용 직·편물의 수분이동 특성 측정 방법에 따른 흡한속건성 평가 (Assessment of Wicking and Fast Dry Properties According to Moisture Transport Measurement Method of Knit and Woven Fabrics for Garment)

  • 김현아;김승진
    • 감성과학
    • /
    • 제20권2호
    • /
    • pp.117-126
    • /
    • 2017
  • 본 연구에서는 직/편물 8종을 대상으로 이들 수직방향과 수평방향 수분이동특성 측정방법에 따른 소재들의 수분이동 특성을 분석하였다. 또한, 8종의 시편의 MMT에 의한 건조특성을 수직 건조 측정 결과와 비교하여 논의하였다. 수평수분이동 방법인 MMT 시험 결과는 수직법인 바이렉 방법의 결과와 유사한 거동을 나타내었다. 대나무, 린넨 및 면/나일론 복합 소재는 드롭법의 흡수시간은 짧았으며, 표면의 낮은 접촉각 및 직물의 높은 다공성에 기인한 것으로 판단되며, 친수성 스테이플 섬유의 구조와 상관이 있을 것으로 보인다. MMT에 의한 건조특성은 니트 및 대나무 직물의 최대 흡수반경이 가장 우수했으며, 수식 건조법에 비해 차이를 나타내었다. MMT 방법의 건조속도는 직물의 두께와 포화수분 흡수율과 높은 상관성을 가졌으며, 회귀계수는 각각 0.9와 0.88이었다. 이는 직물의 두께가 얇을수록 위킹 및 건조특성이 우수하며, 기능성 소재기획시 착용 내구성을 판단하는데 중요함을 의미한다. 또한 상이한 섬유소재, 실 및 구조의 소재에 대한 수분이동특성(위킹, 건조)는 측정 방법에 따라 다른 결과를 나타내었다.