• Title/Summary/Keyword: Brushless dc motor

Search Result 552, Processing Time 0.023 seconds

A CAE System for Motor Design (모터 설계를 위한 CAE 시스템 개발)

  • Choi, Hong-Soon;Chang, Kyung-Woon;Kim, Deok-Geun;Yoon, Joong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.60-62
    • /
    • 2001
  • In this paper, a CAE system, $MotorPro^{(TM)}$, is presented for motor design. It is composed of equivalent magnetic circuit method and finite element method. It provides fully automated finite element method that takes only a few seconds to a few minutes. Using this system. 18kw brushless DC motor is dealt as design example.

  • PDF

A Study on Performance Improvement of Sensorless Operation of the Brushless DC Moter in Low Speed Region (저속영역에서의 브러시리스 직류전동기의 센서리스 운전 성능 향상에 대한 연구)

  • Seo Mun-Seok;Bae Jong-Pyo;Choe Jae Hyeok;Kim Jong-Sun;Yoo Ji-Yoon;Yeo Hyeong-Gee
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.124-128
    • /
    • 2002
  • This Paper propose a novel sensorless drive system for the trapezoidal brushless DC motor in Bow speed region. The inverter DC input voltage is controlled by step-down converter for low speed operation. A indirect rotor position sensing technique based on a detailed analysis of the terminal voltage characterisrics is proposed in this paper. A sensorless drive system is implemented using a TMS320F240 for the main process and IPM(Intelligent Power Module) for the inverter.

  • PDF

A study on the BLDC Motor Controller Providing fuels for a tank in LPG vehicles (LPG 연료펌프 구동용 BLDC모터 제어기 개발)

  • Ha, Keun-Soo;Chung, Joong-Ki;Rhyu, Se-Hyun;Lee, Seong-Ho;Son, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.234-236
    • /
    • 2001
  • 자동차 산업의 활성화로 인하여 차량의 연료 소비의 고효율화 및 구동모터의 고정밀 설계 기술의 향상이 대두되고 있는 실정이다. 특히, LPG 차량의 연료 펌프 모터의 고속화, 저진동, 저 소음화의 추세로 인하여 기존의 Brush타입의 DC모터를 대체하기 위한 Brushless DC 모터의 개발이 증대되고 있다. 본 논문에서는 이러한 Brushless DC모터의 고정밀 속도제어 및 빠른 응답 특성을 가지는 제어기를 개발하였으며, 회전자의 위치를 파악하기 위하여 역기전력을 이용한 센서리스형 제어기를 개발하였다. 본 논문에서 개발한 제어기는 가변속도제어범위를 가지며. 2000rpm에서 정격 속도를 가진다. 제어기의 성능 검증을 위하여 정격 속도에서의 단위스텝 응답 특성 실험을 하였으며, 각각의 게인 설정에 따른 제어 성능 실험을 하였다.

  • PDF

A Study on the Permanent Magnet Overhang Effect in Brushless DC Motor (브러시리스 DC 모터의 영구자석 오버형 효과 대한 연구)

  • Kwon, H.;Chun, Y.D.;Lee, J.;Kim, S.;Kim, Y.H.;Im, T.B.;Sung, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.599-601
    • /
    • 2001
  • This paper investigates the permanent magnet (PM) overhang effect on the characteristics such as cogging torque and torque in brushless DC motor (BLDCM). The overhang effect has been used to enlarge the performance of the radial flux density in BLDCM and balance the force in the axial direction for the reduction of the vibration. 3D equivalent magnetic circuit network method (3D EMCNM) is used for the accurate and efficient analysis. The characteristics of BLDCM are analyzed according to the variation of overhang length and the optimal length and ratio of overhang is determined.

  • PDF

Capacitance Estimation Method of DC-Link Capacitors for BLDC Motor Drive Systems

  • Moon, Jong-Joo;Kim, Yong-Hyu;Park, June-Ho;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.653-661
    • /
    • 2016
  • This paper proposes a capacitance estimation method of the dc-link capacitor for brushless DC motor (BLDCM) drive systems. In order to estimate the dc-link capacitance, the BLDCM is operated in quadrant-II or -IV among four-quadrant operation. Quadrant-II and -IV are called reverse braking and forward braking, respectively. During the braking operation of the BLDCM, the capacitor is charged by the phase current and then the voltage is increased during the braking operation time. The capacitor current and voltage can be obtained by using the phase current sensor of BLDCM and the dc-link voltage sensor. The capacitance and be easily obtained by the voltage equation of the capacitor. The proposed method guarantees the reliable and simple calculation of the dc-link capacitance without additional hardware system except several the sensors already installed for the motor control system. The effectiveness of the proposed method is verified through both the simulation and experimental results.

Position Correction Method for Misaligned Hall-Effect Sensor of BLDC Motor using BACK-EMF Estimation (역기전력 추정법을 이용한 브러시리스 직류 전동기의 홀센서 상전류 전환시점 보상 방법)

  • Park, Je-Wook;Kim, Jong-Hoon;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.246-251
    • /
    • 2012
  • This paper proposes a new position compensation method for misaligned Hall-effect sensors of BLDCM(Brushless DC Motor). If the Hall-effect sensors are installed at wrong position, the exact rotor position cannot be obtained. Therefore, when the BLDCM is controlled with this wrong position, the torque ripple can be increased and the average torque also decreases. The back-EMF of BLDCM can be obtained by using the voltage equation and by multiplying the back-EMF constant and rotor speed. At a constant speed, the estimated back-EMF by using the multiplication of the back-EMF constant and rotor speed is constant, but the estimated back-EMF from the voltage equation decreases at the commutation point because the line-to-line back-EMF of two conducting phases is start to decrease at this point. Therefore, by using the difference between these two estimated back-EMFs, the commutation point of the phase current can be determined and position compensation can be carried out. The proposed position correction method doesn't require additional hardware circuit and can be easily implemented. The validity of the proposed position compensation method is verified through several experiments.

A Study on the High Speed of Cutting Tool Feed System for the Noncircular Machining (비진원 가공용 공구 이송장치의 고속화 성능에 관한 연구)

  • 김성식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.96-103
    • /
    • 1998
  • With the advance of processing technology , so as to spare fuel, piston heads used in automobile reciprocating engine have complex 3-dimension, with respect to shape such as ovality, profile, eccentricity, offset, recess. Therefore, coming out of the existing process work used master cam. the process work is performed using a CNC lathe. For a precision processing, the processing work is need to make study of high speed feed gear synchronized with the rotative speed of main spindle. And then the high speed feeding system must maintain high dynamic stiffness, high speed and high positioning accuracy . In this paper, in order to achieve high speed cutting tool feeding. The linear brushless DC motor is used for satisfying this process work. The ball bush and turicite is used as the guidance of the feed gear system. Also linear encoders, digital servo amplifiers and controller are used for controlling driving motor. This paper presents the design and simulation of the new tool feed system for noncircular machining.

  • PDF

Robust Control using Observer for Brushless DC Servo Motor (BLDC 서보 모터의 관측자를 이용한 강인 제어)

  • Sin, Du-Jin;Heo, Uk-Yeol
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.451-458
    • /
    • 2000
  • The precise speed and position control technique for Brushless DC Motor demands accurate position and speed feedback information. Generally, resolver or absolute encoders are used as speed and positiion sensor. But they increase cost and more problem happens at low speed than high speed specially. Therefore, in this paper, optimal speed observer is proposed for decreasing size and cost of whole system. And also, we consider the error problem about the system modeling and measurement at low speed range as well as high speed. The overall system consists of two parts, a drive and a speed observer. We make use of Least square curve fitting algorithm as speed observer and can overcome low resolution by proposed observer. Also, because of using the signal of hall sensor, robust control is possible in low speed as well as high speed for the change of the parameters of the system and disturbance. To construct observer using the signal of hall sensor, we design the pulse multiplier circuit and the software of microprocessor, AT89CC2051. Finally, the performance of the proposed observer is exemplified by some simulations and experiments.

  • PDF

A Design of Programmable Low Pass Filter to Reduce the ZCP Estimation Error at High Speed BLDC Sensorless Drive (BLDC 고속 센서리스 구동의 ZCP 추정 오차 저감을 위한 Programmable Low Pass Filter 설계)

  • Seo, Eunjeong;Lee, Kangseok;Lee, Wootaik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • This paper presents a design method of programmable low pass filter(PLPF) which reduce an estimation error of a zero crossing point(ZCP) for a high speed brushless DC(BLDC) motor drive. BLDC motor sensorless drive is possible by estimation of ZCP. The ZCP estimated by detecting a change of back-EMF polarity has the estimation error because noises exist on the measured back-EMF. Therefore a calculated commutation timing using the ZCP is inaccurate. And the inexact commutation timing leads to ripples of 3-phase current and degradation of drive performance. This paper proposes the design method of the PLPF to overcome these problems. First, a speed calculated a inaccurate period of the ZCP is analyzed in the frequency domain. Then, the PLPF that has varying cut-off frequency according to change of the speed is designed on the frequency analysis result. The proposed method is verified by the experiment.

A characteristic comparison of BLDCM, IPMSM by harmonics, eddy current and thermal analysis (고조파, 와전류 및 열 해석을 통한 BLDCM, IPMSM의 특성비교)

  • Jin, Chang-Sung;Bae, Jae-Nam;Kim, Ki-Chan;Son, Rak-Won;Kim, Sol;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.25-27
    • /
    • 2007
  • Brushless DC Motor (BLDCM) is DC motor and Interior PM Synchronous Motor (IPMSM) is AC motor. Besides their way of control is different. But it is similar that both motors rotate synchronous velocity and use the permanent magnet. So, it is an objective to grasp a tendency of motor design and efficiency of motor through a characteristic comparison of BLDCM and IPMSM with the same power, rotation velocity, torque and input voltage.

  • PDF