• Title/Summary/Keyword: Brushless DC Machines

Search Result 22, Processing Time 0.019 seconds

Impact of Eccentricity and Demagnetization Faults on Magnetic Noise Generation in Brushless Permanent Magnet DC Motors

  • Rezig, Ali;Mekideche, Mohammed Rachid;Djerdir, Abdesslem
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.356-363
    • /
    • 2011
  • Vibrations and noise in electrical machines are directly related to the characteristics of the radial forces on one hand, and mechanical behavior on the other [1, 4]. The characteristics of these forces depend on the air gap flux density, which is also influenced by other factors, such as stator slots and poles, saturation level, winding type, and certain faults. The aim of this work is to investigate the effect of eccentricity and demagnetization faults on electromagnetic noise generated by the external surface of Permanent Magnet Synchronous Machine [PMSM]. For this purpose, an analytical electromagnetic vibroacoustic model is developed. The results confirm the effect of eccentricity and demagnetization fault in generating some low modes radial forces.

Improved Analytical Modeling of a Ellipse Shape Permanent Magnet Rotor in Ultra-High-Speed Brushless DC motor for the Reduction of Torque Ripple

  • Sung, So-Young;Jeong, Jae-Hoon;Choi, Ji-Hwan;Park, Hyung-Il;Jang, Seok-Myeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.945-950
    • /
    • 2013
  • This paper deals with the ellipse permanent magnet machines for the minimization of torque ripple based on electromagnetic field theory. On the basis of a magnetic vector potential and a two dimensional (2-D) polar system, analytical solutions for flux density due to permanent magnet (PM) and current are obtained. In particular, the analytical solutions for mathematical expressions of magnets with different circumferential thicknesses can be solved introducing improved magnetization modeling techniques. The analytical results are validated extensively be nonlinear finite element solutions, a reduction of torque ripple can be achieved.