• Title/Summary/Keyword: Brushless

Search Result 766, Processing Time 0.023 seconds

Design of a permanent magnetic synchronous motor speed servo controller using on-line tuning PI control method (온라인 동조 PI 제어기법을 이용한 영구자석형 동기전동기의 속도 제어기 설계)

  • Jun, In-Hyo;Im, Sang-Duck;Choi, Jung-Keyng;Park, Seung-Yub
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.36-45
    • /
    • 1998
  • In this paper, a method of on-line PI gain-tuninng is proposed for the speed control of brushless D.C. motor by investigating the pattern of input and output without estimating parameter. Proportional gain is tuned in the process to obtain a fast speed response by supplying the maximum constant input. And integral gain is appropriately tuned in the process of proportional control so that the response may be stably converged and the overshoot may be prevented. Therefore because both control and gain-tuning are executed concurrently, additional works that estimate parameters and so on aren't required in the proposed method. In the proposed method, both fast-response and overshoot problem are well solved, and it is more useful and convenient than existing auto-tuning methods in the speed control of D.C. motor. It is illustrated by simulations and experimental results that the proposed method is useful and stable.

  • PDF

Design of Sensorless BLDC Motor Driver Using Variable Voltage and Back-EMF Differential Line (가변 전압기와 역기전력 차동방식을 이용한 센서리스 BLDC 전동기 드라이버 설계)

  • Lee, Myoungseok;Kong, Kyoungchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.910-916
    • /
    • 2015
  • A sensorless motor control scheme with conventional back-Electro Motive Force (EMF) sensing based on zero crossing point (ZCP) detection has been widely used in various applications. However, there are several problems with the conventional method for effectively driving sensorless brushless motors. For example, a phase mismatch of 30 degrees occurs between the ZCP and commutation time. Additionally, most of the motor speed/current controls are achieved based on a pulse width modulation (PWM) method, which generates significant noise that distracts the back-EMF sensing. Due to the PWM switching, the ZCP is not deterministic, and thus the efficiency of the motor is reduced because the phase transition points become uncertain. Moreover, the motor driving performance is degraded at a low speed range due to the effect of PWM noise. To solve these problems, an improved back-EMF detection method based on a differential line method is proposed in this paper. In addition, the proposed sensorless BLDC driver addresses the problems by using a variable voltage driver generated from a buck converter. The variable voltage driver does not generate the PWM switching noise. Consequently, the proposed sensorless motor driver improves 1) the signal-to-noise ratio of back-EMF, 2) the operation range of a BLDC motor, and 3) the torque characteristics. The proposed sensorless motor driver is verified through simulations and experiments.

Research on Speed Estimation Method of Induction Motor based on Improved Fuzzy Kalman Filtering

  • Chen, Dezhi;Bai, Baodong;Du, Ning;Li, Baopeng;Wang, Jiayin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.272-275
    • /
    • 2014
  • An improved fuzzy Kalman filtering speed estimation scheme was proposed by means of measuring stator side voltage and current value based on vector control state equation of induction motor. The designed fuzzy adaptive controller conducted recursive online correction of measurement noise covariance matrix by monitoring the ratio of theory residuals and actual residuals to make it approach real noise level gradually, allowing the filter to perform optimal estimation to improve estimation accuracy of EKF. Meanwhile, co-simulation scheme based on MATLAB and Ansoft was proposed in order to improve simulation accuracy. Field-circuit coupling problems of induction motor under the action of vector control were solved and the parameter optimization accuracy was improved dramatically. The simulation and experimental results show that this algorithm has a strong ability to inhibit the random measurement noise. It is able to estimate motor speed accurately, and has superior static and dynamic characteristics.

Design of a Integral Sliding Mode Speed Controller having Chattering Alleviation Characteristics for the Sinusoidal type Brushless DC Motor (채터링 저감특성을 갖는 정현파형 브러시리스 직류전동기 (BLDC Motor)의 적분 슬라이딩 모드 속도제어기 설계)

  • Kim, Sei-Il;Choi, Jung-Keyng;Park, Seung-Yub
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.2
    • /
    • pp.1-11
    • /
    • 2001
  • In this paper, a chattering alleviation VSS controller for the sinusoidal type BLDC motor is designed. Dead Zone function is proposed to change the chattering occurring in the transient state from high frequency to low frequency and time varying gains arc applied for the control input to eliminate the steady state excessive chattering in the conventional ISM. The proposed Dead Zone function represents the sliding layer composed of two switching surfaces and if a state vector exists in this layer, the chattering don't occur. Simulation and experimental results confirm the useful effects of the above algorithm.

  • PDF

Development of Variable Speed Digital Control System for SRM using Simple Position Detector (간단한 위치검출기를 이용한 SRM 가변속 디지털 제어시스템 개발)

  • 천동진;정도영;이상호;이봉섭;박영록
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.202-208
    • /
    • 2001
  • A Switched Reluctance Motor(SRM) has double salient poles structure and the phase windings are wound in stator. SRM hase more simple structure that of other motor, thus manufacture cost is low, mechanically strong, reliable to a poor environment such as high temperature, and maintenance cost is low because of brushless. SRM needs position detector to get rotator position information for phase excitation and tachometer or encoder for constant speed operation. But, this paper doesn\`s use an encoder of high cost for velocity measurement of rotator. Instead of it, the algorithm for position detection and velocity estimation from simple slotted disk has been proposed and developed. To implement variable speed digital control system with velocity estimation algorithm, the TMS320F240-20MIPS fixed point arithmetic processor of TI corporation is used. The experimental results of the developing system are enable to control speed with wide range, not only single pulse, hard chopping mode and soft chopping, ut also variable speed control, and advance angle control.

  • PDF

Design and Analysis of A New Type of the Motor-Driven Blood Pump for Artificial Heart (인공심장용 전동기구동형 혈액 펌프의 설계 및 해석에 관한 연구)

  • 천길정;김희찬
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.139-150
    • /
    • 1989
  • A new motor-driven blood pump for artificial heart was developed. In this blood pump, a small size, high torque brushless DC motor was used as an energy converter and the motor rolls back and forth on a circular track. This movement of the "rolling-cyliner" causes blood ejection by alternately pushing left or right polyurethane blood sacs. This moving-actuator mechanism could be eliminate two potential problems of other motor-driven artificial hearts such as large size and poor anastomosis for the implantation. Theoretical analyses on the pump efficiency, the temperature rise, and the inflow mechanism were also performed. In a series of mock circulation tests, the theoretical analyses were compared to the measured hemodynamic and mechanical values. The pump system was shown to have sufficient cardiac output (upto 9 L/min), sensitivity to preload, and mechanical stability to be tested as an implantable total artificial heart.ial heart.

  • PDF

Design of Embedded Electrical Power Control Unit for Personal Electrical Vehicle (1인승 전기차량의 임베디드 전동제어장치 설계)

  • Shin, Kyoo-Jae;Cha, Hyun-Rok
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.282-290
    • /
    • 2014
  • This paper presents the design of embedded electrical power control unit for Personal Electrical Vehicle(PEV). The embedded unit is designed using PIC18F8720 processor, 16Mb flash ROM, 32Mb SDRAM and signal condition circuits. The proposed PEV consists of 4KW in-wheel Brushless DC Motor(BLDCM), 3 phase voltage source inverter with the $180^{\circ}$ conduction space vector PWM method, PID speed controller and the embedded control unit. The PEV has mechanical manufacture of inverse 3 wheel system, which is applied by the in-wheel BLDCM and steering mechanism with tilting function. Also, the performances of the proposed embedded electrical power control unit are verified through the lab experiment and road driving test of PEV.

A Study of Improvement on the responsiveness of Digital AVR System (Digital 자동전압조정장치(AVR)의 속응성 향상에 관한 연구)

  • Kim, Song-hyun;Lee, Hyung-ki;Choe, Wook-yeon;An, Young-joo;Kim, Hyun-soo;Kim, Gi-Ryang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.246-247
    • /
    • 2015
  • Type of Automatic Voltage Regulator (AVR) can be divided into Analog and Digital Type. Automatic Voltage Regulator (AVR) of the synchronous generators of the brushless type are to be reduced to the voltage fluctuation on the basis of the total load. The PID control method is a general control technique is commonly widely used. In this study, the control target parameter iPID does not reset the parameters of the controller for the variable (Intelligent PID) using the controller synchronous generator Digital automatic voltage to you like all applied to the adjusting device (AVR) the voltage change is small, improved responsiveness was studied in this controller.

  • PDF

A Study on the Design and Implementation of 2-phase BLDC Fan Motor with 1-horsepower Class for Air Conditioning (공조용 1마력급 2상 BLDC 팬모터의 설계 및 구현에 관한 연구)

  • Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.757-764
    • /
    • 2018
  • This paper describes the design and implementation of a 1hp class two-phase type BLDC fan motor used in an air conditioning system. The BLDC motor, which is implemented in this study, is not a commutator motor type with excellent lifetime and durability and is driven by two phase power source. The most important target specification of a motor used in an air conditioning system is that it has a high efficiency at the rated operating point. For this purpose, we designed the stator shape of the BLDC motor, the design of the rotor magnet, and the control circuit for driving. The BLDC motor has a structure where the motor part, the control part, and the power part are integrated. The finite element analysis was used to calculate the characteristics of the BLDC motors, and the conformity of the design results was confirmed by fabricating and testing the prototype model.

Voltage Controlled Speed Controller of BLDC Motor Using Fuzzy Logic Control (Fuzzy Logic Control를 이용한 BLDC 모터의 전압 제어 속도 제어기)

  • Park, Jun-Ho;Han, Sang-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.481-486
    • /
    • 2018
  • DC motors are classified as DC motors with brush structure and BLDC motors without brush structure. Representing the speed control of the BLDC motor is the PI control. The speed control using the PI controller has a disadvantage that the response characteristic to reach the steady state is slow. Therefore in this paper, a voltage controlled speed controller using a Fuzzy Logic Controller (FLC), which has a short steady response time and usefulness of nonlinear control. The validity and usefulness of the proposed fuzzy speed controller are verified by simulation through Simulink of MATLAB program. Experiments were performed on the PI controller and the proposed fuzzy speed controller in three cases with reference speeds of 500rpm, 800rpm, and 1500rpm. Experimental results show that the proposed fuzzy controller has more 30% improved steady state speed response than PI controller.