• Title/Summary/Keyword: Brushless

Search Result 766, Processing Time 0.028 seconds

Design of fuzzy logic position controller for brushless DC motor (브리시리스 전동기의 위치제어를 위한 Fuzzy Logic 제어기 구성에 관한 연구)

  • 박귀태;이기상;김성호;배상욱;박채홍;이동원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.122-126
    • /
    • 1990
  • This paper discusses the possibility of applying fuzzy logic controller in a microprocessor-based brushless DC servo motor controller, which requires faster and more accurate response compared with other industrial processes. Limitations of fuzzy logic controller are also described.

  • PDF

A Study for sensorless Control of Brushless DC-Minimotor (Blushless 직류 소형모터의 sensorless 제어에 대한 연구)

  • 김인구;이광식
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.99-104
    • /
    • 2000
  • This paper present the design, produce, circuit design and practical measurement for a Brushless DC Motor(BLDCM) with Ferrit-Magnet. It was used PI controller. The practical PI control has bin widely used for DC-Motor.

  • PDF

Development of a Sensorless Drive for Interior Permanent Magnet Brushless DC Motors (영구자석 매입형 브러시리스 직류 전동기용 센서리스 드라이브 개발에 관한 연구)

  • 여형기;홍창석;이광운;박정배;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.44-50
    • /
    • 1997
  • This paper describes an indirect sensing method for the rotor flux position of interior permanent magnet (IPM) brushless DC motors. The phase inductances of an IPM motor vary appreciably according to the rotor position. The waveform characteristics of the terminal voltage of IPM brushless DC motors is analysed and a simple and practical method for indirect sensing of the rotor position is proposed. A compact and economical sensorless drive is implemented and tested using a 87c196mc 16-bit one-chip microprocessor. The experimental results show the validity of the proposed method. The drive is applied to drive a compressor of air-conditioner and works well from 1,200 to 6,600 [rpm].

  • PDF

Development of Single-phase Brushless DC Motor with Outer Rotor for Ventilation Fan (환풍기용 외전형 단상 브러시리스 직류전동기 개발)

  • Park, Yong-Un;Jeong, Hak-Gyun;Cho, Ju-Hee;So, Ji-Yong;Jung, Dong-Hwa;Kim, Dae-Kyong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.36-41
    • /
    • 2013
  • This paper is development of single-phase brushless DC motor with outer rotor for ventilation fan. Cogging torque causes the noise vibration to greatest impact on ventilation fan. Asymmetric notches are applied to tapered-teeth for cogging torque reduction of single-phase brushless DC motor. Initial model is notchless and proposed model is applied 2 asymmetric notches. The proposed method is proved motor characteristic through finite element analysis(FEA). Also, experimental results verify that the proposed model considerably reduces cogging torque and have the good sound quality in ventilation system.

A Study on the Development of Sensorless Drive System for Brushless DC Motor of Electrical Vehicle (전기자동차용 브러시리스 직류 전동기의 센서리스 드라이브 개발에 관한 연구)

  • 김종선;유지윤;배종포;서문석;최욱돈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.336-343
    • /
    • 2003
  • Generally, brushless DC motor(BLDCM) driving system uses hall sensors or encoders as the mechanical position or speed sensors. It is necessary to achieve the information's of rotor position for driving trapezoidal type brushless DC motor without any position sensor. This paper proposes a sensorless driving system with absolute rotor position detecting circuit which acquires both commutating phase and commutating time by analyzing motor phase voltages. Proposed system is applied to a 10k[W] rating motor which actually used in Hybrid Electric Vehicles. The experimental results will show the validity of the proposed system and the practical use of proposed sensorless drive.

A Study on low-Cost Sensorless Drive of Brushless DC Motor for Compressor Using Random PWM (브리시리스 직류 전동기에 랜덤 PWM을 적용한 저가형 센서리스 드라이브에 관한 연구)

  • Lee, Seung-Gun;Kim, Dae-Kyong;Yang, Seung-Hak;Lim, Young-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.97-103
    • /
    • 2008
  • Recently, it is increased to apply sensorless drive for BLDC (Brushless DC) motor to household electrical appliances, especially in the refrigerators and air conditioners, to reduce the cost and the acoustic noise by the operation and to make their functions more comfortable for human beings. In this paper, low-cost sensorless drive for BLDE motor is implemented by random PWM (Pulse Width Modulation). The experimental results show that the electromagnetic noise was reduced and the sound quality was improved by BLDC motor sensorless random PWM Control.

A sensorless speed control of brushless DC motor by using direct torque control (직접토크제어에 의한 브러시리스 직류전동기의 센서리스 속도제어)

  • Yoon, Kyoung-Kuk;Oh, Sae-Gin;Kim, Deok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.935-939
    • /
    • 2015
  • This paper describes sensorless speed control of brushless DC motors by using direct torque control. Direct torque control offers fast torque response, robust specification of parameter changes, and lower hardware and processing costs compared to vector-controlled drives. In this paper, the current error compensation method is applied to the sensorless speed control of a brushless DC motor. Through this control technique, the controlled stator voltage is applied to the brushless DC motor such that the error between the stator currents in the mathematical model and the actual motor can be forced to decay to zero as time proceeds, and therefore, the motor speed approaches the setting value. This paper discusses the composition of the controller, which can carry out robust speed control without any proportional-integral (PI) controllers. The simulation results show that the control system has good dynamic speed and load responses at wide ranges of speed.

Torque Ripple Reduction Method in a Sensorless Drive for the BLDC Motor

  • Kim, Dae-Kyong;Lee, Kwang-Woon;Kwon, Byung-Il
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.196-200
    • /
    • 2004
  • This paper presents a method to reduce the commutation torque ripple in a position sensorless brushless DC motor drive. To compensate the commutation torque ripple considerably, the duration of commutation must be known. The proposed method measures the duration of commutation from the terminal voltage of the motor, calculates a PWM duty ratio using the measured commutation interval to suppress the commutation torque ripple, and applies it to the calculated PWM duty ratio only during the next commutation. Experimental results show that pulsating currents and vibrations are considerably reduced when the proposed method is applied to a position sensorless brushless DC motor drive for the air-conditioner compressor.

Application of Permanent Magnet Synchronous Machines in Automotive Steering Systems

  • Sebastian Tomy;Islam Mohammad S.;Mir Sayeed
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.111-117
    • /
    • 2005
  • Several of the conventional hydraulic systems in an automobile are now being replaced by more reliable and energy efficient electromechanical systems. Developments in the brushless permanent magnet machine and in the power and control electronics are the key factors responsible for this transformation. These applications brought out some performance challenges associated with the brushless machines. This paper will focus on these challenges to be able to use these machines in such applications. In terms of replacing hydraulic systems with electromechanical systems, steering system is leading the way in automobiles. Currently, steering systems using Electro-hydraulically assisted systems and Electrically assisted (Electromechanical) systems are in the market. Though the Electrically assisted power steering has several advantages over other systems, certain performance and cost challenges delayed the penetration of such systems in to the market.