• Title/Summary/Keyword: Brush Noise

Search Result 33, Processing Time 0.023 seconds

A Study on Noise Reduction of a DC Motor (DC 모터 소음 저감에 관한 연구)

  • 정일호;양홍익;박태원;김주용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.764-769
    • /
    • 2004
  • The DC Motor in a vehicle may cause noise and vibration because of high speed revolution, which can make a driver feel uncomfortable. There have been various studies attempting to solve these problems, focusing mostly on the causes of and ways to reduce noise and vibration. It is suggested that the noise in a DC Motor may be primarily due to interaction between a brush and a commutator. Brush noise, the most common noise in a DC Motor, results from a brush bounced from the surface of the commutator, fluctuation of the friction between the brush and the commutator, and the impact on the brush when passing over slots of the commutator. Based on the noise test, one of the most important design parameters was shown to be the roundness of the commutator. As the DC motor is used, the roundness of the commutator gets bigger with subsequent increase of the level of brush noise and vibration. There must be a threshold in order to prevent the brush noise from getting worse. Using the method of CAE is more efficient than the real test for purposes of looking for various design parameters to maintain the roundness of the commutator. In this study, the design process to reduce the brush noise is presented with the use of a computer model. The design parameters to reduce the brush noise and vibration are proposed by using FEM. The design parameters are used to reduce the noise and vibration of a DC motor and it is verified with the test results on a fan DC motor in a vehicle. This method may be applicable to various DC motors.

  • PDF

A Study on Noise Reduction of a Fan DC Motor in a Vehicle using FEM (유한 요소법을 이용한 차량용 팬 DC 모터 소음 저감에 관한 연구)

  • Jung, Il-Ho;Seo, Jong-Hwi;Park, Tae-Won;Kim, Joo-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.158-165
    • /
    • 2004
  • The DC motor in a vehicle may cause noise and vibration because of high speed revolution, which can make a driver feel uncomfortable. There have been various studies attempting to solve these problems, focusing mostly on the causes of and ways to reduce noise and vibration. It is suggested that the noise in a DC motor may be primarily due to interaction between a brush and a commutator. Brush noise, the most common noise in a DC motor, results from a brush bounced from the surface of the commutator, fluctuation of the friction between the brush and the commutator, and the impact on the brush when passing over slots of the commutator. Based on the noise test, one of the most important design parameters was shown to be the roundness of the commutator. As the DC motor is used, the roundness of the commutator gets bigger with subsequent increase of the level of brush noise and vibration. There must be a threshold in order to prevent the brush noise from getting worse. Using the method of CAE is more efficient than the real test for purposes of looking for various design parameters to maintain the roundness of the commutator. In this study, the design process to reduce the brush noise is presented with the use of a computer model. The design parameters to reduce the brush noise and vibration are proposed by using FEM. The design parameters are used to reduce the noise and vibration of a DC motor and it is verified with the test results on a fan DC motor in a vehicle. This method may be applicable to various DC motor.

Frequency Distribution of Mechanical Noise Signals for Ultrasonic Wave and AE Sensor with Brush Spark of DC Motor (직류전동기 브러시 섬락에 따른 기계적 노이즈 신호의 주파수 분포)

  • 이상우;김인식;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.36-43
    • /
    • 2004
  • In this paper, the frequency spectra from respective mechanical noise signals detected using ultrasonic wave and AE(Acoustic Emission) sensor were analysed to under spark generation between brush and commutator side with arbitrarily 15$^{\circ}$ rotation for brush from the DC motor in operation. Also, the frequency spectra from respective magnetizing noise signals detected using ultrasonic wave and AE sensor were analysed to under neutral point for brush from the DC motor in normal operation. And the analyses and comparison between the mechanical noise signal and magnetizing noise signal of ultrasonic wave with brush location change from the DC motor in operation. As the experimental results, tile mechanical noise signal of ultrasonic wave under spark generation between brush and commutator side with brush location change from the DC motor in operation were increased about 2.5∼3.0 times than magnetizing noise signal of ultrasonic wave form the DC motor in normal operation. Also, the main frequency band for mechanical noise signals of AE under spark generation between brush and commutator side with brush location change from the DC motor in operation, appeared about 1.3[MHz]∼l.5[MHz] by the fast fourier transform.

The Noise Reduction of a DC Motor Using Multi-body Dynamics

  • Jung Il-Ho;Seo Jong-Hwi;Choi Sung-Jin;Park Tae-Won;Chai Jang-Bom
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.336-342
    • /
    • 2005
  • The DC motor of a vehicle may cause noise and vibration due to high-speed revolution, which can make a driver feel uncomfortable. There have been various studies attempting to solve these problems, mostly focusing on the causes of noise and vibration and a means of preventing them. The CAE methodology is more efficient than a real test for the purpose of looking for various design parameters to reduce the noise and vibration of the DC motor. In this study, a design process for reducing brush noise is presented with the use of a computer model, which is made by using a multi-body dynamics program (DADS). The design parameters to reduce the brush noise and vibration were proposed using a computer model. They were used to reduce the noise and vibration of the DC motor and verified by the test results of the fan DC motor in the vehicle. This method may be applicable to various DC motors.

The Noise Reduction of A DC Motor Using Multi-body Dynamics (다물체 동역학을 이용한 DC 모터 소음 저감에 관한 연구)

  • Jung, Il-Ho;Park, Tae-Won;Park, Ji-Yeon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.875-880
    • /
    • 2004
  • The DC Motor of a vehicle may cause noise and vibration due to high-speed revolution, which can make a driver feel uncomfortable. There have been various studies that attempted to solve these problems, mostly focusing on the causes of noise and vibration and the means of preventing them. The CAE methodology is more efficient than a real test for the purpose of looking for various design parameters to reduce the noise and vibration of the DC motor. In this study, a design process for reducing brush noise is presented with the use of a computer model, which is made by using a multi-body dynamics program (DADS). The design parameters to reduce the brush noise and vibration were proposed using a computer model. They were used to reduce the noise and vibration of a DC motor and verified by the test results of a fan DC motor in a vehicle. This method may be applicable to various DC motors.

  • PDF

Vibration Behavior of a Rotating Brush Roll in Contact with a Solid Roll (강체롤과 접촉 회전하는 브러시롤의 진동 현상)

  • 허주호
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.499-509
    • /
    • 1997
  • During the process of oxide removal from work rolls in sheet metal manufacture, filamentary brushes frequently exhibit a bouncing or chatter behavior. The dynamics of this phenomenon is investigated through the development of expressions for the non-linear contact stiffness between the brush and the roll. With formulation of simple structural models, the time responses in the presence and absence of friction under random excitation are investigated. Possible solutions for the minimization or avoidance of this bouncing or chatter problem are also suggested.

  • PDF

Low Noise Vacuum Cleaner Design (저소음 청소기 개발)

  • Joo, Jae-Man;Lee, Jun-Hwa;Hong, Seun-Gee;Oh, Jang-Keun;Song, Hwa-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.939-942
    • /
    • 2007
  • Vacuum cleaner is a close life product that can remove various dusts from our surroundings. However well vacuum cleaner clean our environments, many people are looking away from it, due to its loud noise. Its noise causes a big trouble in the usual life, for example, catch calls, TV watching and discussing etc. To reduce these inconveniences, noise reduction methods and systematic design of low noise vacuum cleaner are studied in this paper. At first, sound quality investigation is performed to get the noise level and quality that make people TV watching and catch calls available. Based on the European and domestic customer SQ survey result, sound power, peak noise level and target sound spectrum guideline are studied and introduced. As a second, precise product sound spectrums are designed into each part based on the sound quality result. Fan-motor, brush, mainbody, cyclone spectrums are decided to get the final target sound based on the contribution level. Fan-motor is the major noise source of vacuum cleaner. Specially, its peak sound, RPM peak and BPF Peak, cause the people nervous. To reduce these peak sounds, high rotating impeller and diffuser are focused due to its interaction. A lot of experimental and numerical tests, operation points are investigated and optimization of flow path area between diffusers is performed. As a bagless device, cyclones are one of the major noise sources of vacuum cleaner. To reduce its noise, previous research is used and adopted well. Brush is the most difficult part to reduce noise. Its noise sources are all comes from aero-acoustic phenomena. Numerical analysis helps the understanding of flow structure and pattern, and a lot of experimental test are performed to reduce the noise. Gaps between the carpet and brush are optimized and flow paths are re-designed to lower the noise. Reduction is performed with keeping the cleaning efficiency and handling power together and much reduction of noise is acquired. With all above parts, main-body design is studied. To do a systematic design, configuration design developments technique is introduced from airplane design and evolved with each component design. As a first configuration, fan-motor installation position is investigated and 10 configuration ideas are developed and tested. As a second step, reduced size and compressed configuration candidates are tested and evaluated by a lot of major factor. Noise, power, mass production availability, size, flow path are evaluated together. If noise reduction configuration results in other performance degrade, the noise reduction configuration is ineffective. As a third configuration, cyclones are introduced and the size is reduced one more time and fourth, fifth, sixth, seventh configuration are evolved with size and design image with noise and other performance indexes. Finally we can get a overall much noise level reduction configuration. All above investigations are adopted into vacuum cleaner design and final customer satisfaction tests in Europe are performed. 1st grade sound quality and lowest noise level of bagless vacuum cleaner are achieved.

  • PDF

A New Design of Power Folding Controller for Deterioration Detection (열화방지형 파워폴딩 제어기 설계에 관한 연구)

  • Kim, Ji-Hyeon;Lee, Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.3
    • /
    • pp.51-58
    • /
    • 2008
  • This paper is a study of a prevention of power folding controller's thermal degradation. Power folding technology has been applied for many fields such as side rear vision mirror of vehicles, windshield wiper, antenna, power window. These controllers have been comprised with traditional DC moors, Switching electronic devices, and relays. But this methods have a limitation to overcome such problems of product reliability, endurance, noise margins. Therefore on this paper, to detect the movement of motor, sensing motor brush noise on a load sensing part has been used and controlling a precise RC timing control minimizes the thermal deterioration of motor. And using MOS FETs as a electronic switching device increases life-time and liability of control circuit. After testing such circuit and control method, repetition of operating time, cut-off time, wide operation voltage, power noise margin ware increased over eleven-fold.

Reduction of Flow-Induced Noise in Suction Nozzle of a Vacuum Cleaner by Adopting a Cross-Flow Fan (횡류팬을 적용한 진공청소기 흡입노즐내 유동 소음 저감에 관한 연구)

  • Park, I-Sun;Sohn, Chae-Hoon;Lee, Sung-Cheol;Oh, Jang-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.935-938
    • /
    • 2007
  • In suction nozzle of a vacuum cleaner, where flow-induced noise is generated mainly by flow resistance, several ideas to reduce noise are investigated. To increase fan performance, blade number is optimized and a centrifugal fan is replaced by a cross-flow fan, In addition, gear ratio of fan to drum brush is changed. It is found that fan performance is increased by adopting these methods. Next, the blade height of the fan is decreased to reduce sound pressure level, which causes inevitably decrease in fan performance. Eventually, flow-induced noise is reduced by 6.3 dBA in its overall level with the fan performance maintained.

  • PDF

A Study of Interior Noise Reduction through In-Vehicle Measurement Test to the Windshield Wiper Motor System (차량용 윈드쉴드 와이퍼 모터의 단품 및 실차시험을 통한 소음 저감 연구)

  • 최창환;임상규
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.862-869
    • /
    • 1998
  • The interior noise generated by the windshield wiper system including a wiper motor, the motor mountings and linkages is considered as a structure-borne noise. The structureborne noise is closely related with the system vibration which was transmitted into interior cabin through the car body. In this study, the frequency characteristics of vibration in the wiper motor system were first identified through the frequency analysis. Then effects of the wiper motor mountings and linkages on the vehicle interior noise were studied through in-vehicle measurements. Finally a possibility of noise reduction at a certain frequency was revealed from the study.

  • PDF