• Title/Summary/Keyword: Broussonetia papyrifera Silage

Search Result 2, Processing Time 0.017 seconds

Effect of Broussonetia papyrifera L. (paper mulberry) silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile in dairy cows

  • Si, Bingwen;Tao, Hui;Zhang, Xiaoli;Guo, Jiangpeng;Cui, Kai;Tu, Yan;Diao, Qiyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1259-1266
    • /
    • 2018
  • Objective: This study was carried out to investigate the possible application of Broussonetia papyrifera (B. papyrifera) silage as a functional feeding stuff in dairy cattle. Methods: Seventy-two Holstein cows were divided into four groups randomly and allocated to 6 pens with 3 individuals in each group and fed the original total mixed ratio (TMR) in the dairy farm or the new TMR with 5%, 10%, and 15% B. papyrifera silage, separately. Feed intake were recorded, milk and blood samples were collected, and milk composition, blood metabolites and milk fatty acids composition were measure at the end of the experiment. Results: Dry matter intake of cows decreased when they fed on diet with B. papyrifera, but no differences were observed in body condition score, milk yield, milk protein and lactose, feed efficiency and serum metabolites between groups. Both 10% or 15% of B. papyrifera silage in the diet significantly increased the immunoglobulin A (IgA) and IgG in serum, 15% of B. papyrifera silage increased the content of serum catalase, superoxide dismutase, total antioxidant capacity, and decreased the content of 8-hydroxy-2'-deoxyguanosine. Furthermore, 10% or 15% of B. papyrifera silage resulted in a significant decrease in the milk somatic cell count, and increased the polyunsaturated fatty acids content in the milk. Conclusion: The diets with 10% to 15% of B. papyrifera silage might enhance the immune and antioxidant function of dairy cows and increase the polyunstaturated fatty acid concentration in the milk.

Effect of Broussonetia papyrifera L. silage on blood biochemical parameters, growth performance, meat amino acids and fatty acids compositions in beef cattle

  • Tao, Hui;Si, Bingwen;Xu, Wencai;Tu, Yan;Diao, Qiyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.732-741
    • /
    • 2020
  • Objective: The study was conducted to investigate the effects of Broussonetia papyrifera L. (B. papyrifera) silage on growth performance, serum biochemical parameters, meat quality, and meat amino acids and fatty acids compositions in beef cattle. Methods: Sixty-four male Angus beef cattle were assigned to 4 groups with 4 pens in each group and 4 beef cattle in each pen, and fed with the total mixed ration supplemented with 0%, 5%, 10%, or 15% B. papyrifera silage for 100 days (control group, 5% group, 10% group and 15% group) separately. Results: Beef cattle had significantly higher final body weight (BW) in 15% group, higher average daily gain (ADG) and dry matter intake (DMI) in 5% group, 10% group and 15% group, and higher feed conversion ratio (FCR) in 10% group and 15% group. Significantly higher blood superoxide dismutase (SOD) concentration was noted in 15% group, higher blood total antioxidant capacity (TAC) in 10% group and 15% group, lower 8-hydroxydeoxyguanosine (8-OHdG) and malondialdehyde (MDA) in 15% group. Meat had lower pH in 15% group, higher Commission International DeI'Eclairage (CIE) L in 5% group, 10% group, and 15% group, and lower drip loss in 15% group. Greater concentration of meat polyunsaturated fatty acids (PUFA) was observed in 10% group and 15% group, and docosahexaenoic acid (DHA) in 15% group. Conclusion: Diet with 15% B. papyrifera silage could improve performance and increase final BW, ADG, DMI, and FCR, enhance the antioxidant functions by decreasing blood 8-OHdG and MDA and increasing blood SOD and TAC, improve the meat quality by lowing pH and drip loss and increasing CIE L, increase the meat PUFA and DHA concentration. Polyphenols and flavonoids might be the main components responsible for the antioxidant activity and anti-biohydrogenation in the B. papyrifera silage. And B. papyrifera silage could be used as a new feedstuff in beef cattle nutrition.