• Title/Summary/Keyword: Bromine elimination

Search Result 8, Processing Time 0.017 seconds

Vacuum Ultraviolet Photolysis of Ethyl Bromide at 123.6 nm

  • Hee-Soo Yoo;K. H. Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.1
    • /
    • pp.35-39
    • /
    • 1980
  • A vacuum ultraviolet photolysis of ethyl bromide was studied in the pressure range of 0.5-19.9 torr and at 123.6 nm krypton resonance line. The pressure effect on the reaction was studied by increasing the reactant pressure and by adding an inert gas, e.g., He. In the observation the monatomic gas is found to be no effect in the reaction. A scavenger effect of the reaction was also performed by adding NO gas as a radical scavenger and was found to be quite efficient to scavenge a radical product $C_2H_6$. The observation of the major reaction product $C_2H_6$ was interpreted in terms of a molecular elimination. Nontheless the decreasing phenomenon of ${\phi}_{C_2H_4}/{\phi}_{C_2H_6}$ with pressure rise was attributed to the existence of the two electronically excited states. One state proceeds to the molecular elimination and the other to carbon-bromine bond fission. The excitation and the decomposition mechanisms between two excited states and the reaction products were interpreted in terms of the first excitation which proceeds the molecular elimination, and the second excitation which resulted from the first excited state by collisional cross over decomposes by carbon-bromine bond fission.

Formation of Pyro-products by the Pyrolysis of Monobromophenols

  • Na, Yun-Cheol;Seo, Jung-Ju;Hong, Jong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1276-1280
    • /
    • 2003
  • Thermal behavior of bromphenols was investigated by direct pyrolysis at high temperature. The thermal degradation products formed by the pyrolysis of mono-bromophenols (o-, m-, and p-) were identified by gas chromatography-mass spectrometry. During the pyrolysis reactions, several kinds of dioxins and furans were produced, and the relative ratio of pyro-products was dependent on the substituted position of bromine in phenolic structure due to the effect of symmetry and steric hindrance. The formation of dioxins can be explained by the phenoxy radical addition and Br atom elimination at an ortho-carbon site on phenolic structure. On the other hand, the formation of furans can be explained by the ortho-ortho carbon coupling of phenoxy radicals at unsubstituted sites to form o, o'-dihydroxydiphenyl intermediate via its keto-tautomer, followed by $H_2O$ elimination. The pyrolysis temperature has also a substantial effect on the dimerized products quantities but little effect on the type of pyro-products. Moreover, the formation mechanism of pyro-products was suggested on the basis of products identified.

Technical Development for Chemical Treatment of Brominated Flame Retardant Polybrominated Diphenyl Ethers (PBDEs) (브롬화 난연제인 Polybrominated Diphenyl Ethers (PBDEs)의 화학적처리 기술 개발)

  • Ryoo, Keon Sang;Hong, Yong Pyo;Hong, Sungwook
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.335-340
    • /
    • 2013
  • A chemical reaction of PBDEs was implemented using the polyethylene glycols (PEGs) and KOH, along with different reaction conditions such as temperatures and times. Removal efficiencies of PBDEs before and after chemical reaction were examined by difference of concentration. PBDEs was not removed at lower temperatures of 25 and $50^{\circ}C$. However, under the increased temperature, removal efficiency of PBDEs in ${\sigma}$-xylene was gradually increased, showing completely removal of PBDEs containing 5-6 bromines on biphenyl frame. When increasing the reaction conditions to 4 hours and $150^{\circ}C$, removal efficiency of PBDEs reached almost 100%. In studying the reaction of PEGs with PBDEs, it confirmed that the PBDEs led to less brominated by PEGs through a stepwise process with the successive elimination of bromines.

Electrochemical dehalogenation of disinfection by-products and iodine-containing contrast media: A review

  • Korshin, Gregory;Yan, Mingquan
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.345-353
    • /
    • 2018
  • This paper summarizes results of research on the electrochemical (EC) degradation of disinfection by-products (DBPs) and iodine-containing contrast media (ICMs), with the focus on EC reductive dehalogenation. The efficiency of EC dehalogenation of DBPs increases with the number of halogen atoms in an individual DBP species. EC reductive cleavage of bromine from parent DBPs is faster than that of chlorine. EC data and quantum chemical modeling indicate that the EC reduction of iodine-containing DBPs (I-DBPs) is characterized by the formation of active iodine that reacts with the organic substrate. The occurrence of ICMs has attracted attention due to their association with the generation of I-DBPs. Indirect EC oxidation of ICMs using anodes that produce reactive oxygen species can result in a complete degradation of these compounds yet I-DBPs are formed in the process. Reductive EC deiodination of ICMs is rapid and its overall rate is diffusion-controlled yet I-DBPs are also produced in this reaction. Further progress in practically feasible EC methods to remove DBPs, ICMs and other trace-level organic contaminants requires the development of novel electrocatalytic materials, elimination of mass transfer limitations via innovative design of 3D electrodes and EC reactors, and further progress in the understanding of intrinsic mechanisms of EC reactions of DBPs and TrOC at EC interfaces.

Vacuum Ultraviolet Photolysis of Ethyl Bromide at 104.8-106.7 nm

  • Kim, Hong-Lae;Yoo, Hee-Soo;Jung, Kyung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.2
    • /
    • pp.71-75
    • /
    • 1981
  • Vacuum ultraviolet photolysis of ethyl bromide was studied at 104.8-106.7 nm (11.4-11.6 eV) in the pressure range of 0.2-18.6 torr at $25^{\circ}$ using an argon resonance lamp with and without additives, i.e., NO and He. Since the ionization potential of $CH_3CH_2Br$ is lower than the photon energy, the competitive processes between the photoionization and the photodecomposition were also investigated. The observations indicated that 50% of absorbed light leads to the former process and the rest to the latter one. In the absence of NO the principal reaction products for the latter process were found to be $CH_4, C_2H_2, C_2H_4, C_2H_6, and C_3H_8$. The product quantum yields of these reaction products showed two strikingly different phenomena with an increase in reactant pressure. The major products, $C_2H_4$ and $C_2H_6$, showed positive effects with pressure whereas the effects on minor products were negative in both cases, i.e., He and reactant pressures. Addition of NO completely suppresses the formation of all products except $C_2H_4$ and reduces the $C_2H_4$ quantum yield. These observations are interpreted in view of existence of two different electronically excited states. The initial formation of short-lived Rydberg transition state undergoes HBr molecular elimination and this state can across over by collisional induction to a second excited state which decomposes exclusively by carbon-bromine bond fission. The estimated lifetime of the initial excited state was ${\sim}4{\times}10^{-10}$ sec. The extinction coefficient for $CH_3CH_2Br$ at 104.8-106.7 nm and $25{\circ}$ was determined to be ${varepsilon} = (1/PL)ln(I_0/I_t) = 2061{\pm}160atm^{-1}cm6{-1}$ with 95% confidence level.

Gas Phase Thernal cis-trans Isomerization Reaction of 1-Bromopropene

  • Huh, D- Sung;Um, Jae-Young;Yun, Sun-Jin;Choo, Kwang-Yul;Jung, Kyung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.391-395
    • /
    • 1990
  • The kinetics of thermnal cis-trans isomerization reaction of 1-bromopropene(1-BP) was studied at temperatures from 620.8 to 753.15 K over the pressure range 0.17-50.3 Torr. Both the inhibition effect by cyclohexene or propene and the catalytic effect by HBr showed a radical process as the main mechanism of the isomerization. In the suppression of the radical process by the inhibitors, the molecular process also contributed to overall reaction rate. The reactions demonstrated the first order kinetics under both uninhibited and inhibited conditions and could be represented by the expressions (R = 1.987 cal/mol/K) $k_{un}/s^{-1} = (3.45{\pm}1.50){\times}10^{11}$exp$[(- 48100{\pm}2000)/RT]\;k_{ink}/s^{-1} = (2.98{\pm}1.40){\times}10^{12}$exp$[(- 55800{\pm}1800)/RT]$> where $k_{un}$ is the observed rate constant of cis-1-bromopropene(1-B$P_c$) to trans-1-bromopropene(1-B$P_t$) under uninhibited condition at initial pressure of 50 Torr and $k_{ink}$ is the rate constant under maximal inhibition by cyclohexene. The ratio of rate constants for bromine atom elimination from the allylic hydrogen of reactant(1-BP) and from the inhibitors, propene and cyclohexene, were measured from the observed rates of the uninhibited and inhibited reactions. The inhibition efficiencies of cyclohexene and propene were compared kinetically from the rate constants and shown to give good agreement with the previous results reported from other alkyl bromide pyrolyses.

Studies on the ${\beta}-Tyrosinase$ -Part 2. On the Synthesis of Halo-tyrosine by ${\beta}-Tyrosinase$- (${\beta}-Tyrosinase$에 관한 연구 -제2보 ${\beta}-Tyrosinase$에 의한 Halogen화(化) Tyrosine의 합성(合成)-)

  • Kim, Chan-Jo;Nagasawa, Toru;Tani, Yoshiki;Yamada, Hideaki
    • Applied Biological Chemistry
    • /
    • v.22 no.4
    • /
    • pp.198-209
    • /
    • 1979
  • L-Tyrosine, 2-chloro-L-tyrosine, 2-bromo-L-tyrosine, and 2-iodo-L-tyrosine were synthesized by ${\beta}-tyrosinase$ obtained from cells of Escherichia intermedia A-21, through the reversal of the ${\alpha},{\beta}-elimination$ reaction, and their molecular structures were analyzed by element analysis, NMR spectroscopy, mass spectrometry and IR spectroscopy. Rates of synthesis and hydrolysis of halogenated tyrosines by ${\beta}-tyrosinase$, inhibition of the enzyme activity by halogenated phenols, and effects of addition of m-bromophenol on the synthesis of 2-bromotyrosine were determined. The results obtained were as follows: 1) In the synthesis of halogenated tyrosines, the yield of 2-chlorotyrosine from m-chlorophenol were approximately 15 per cent, that of 2-bromotyrosine from m-bromophenol 13.8 per cent, and that of 2-iodotyrosine from m-iodophenol 9.8 per cent. 2) Rate of synthesis of halogenated tyrosines by ${\beta}-tyrosinase$ was slower than that of tyrosine and the rates were decreased in the order of chlorine, bromine and iodine, that is, by increasing the atomic radius. Relative rate of 2-chlorotyrosine synthesis was determined to be 28.2, that of 2-bromotyrosine to be 8.13, and that of 2-iodotyrosine to be 0.98, respectively, against 100 of tyrosine. However 3-iodotyrosine was not synthesized by the enzyme. 3) The relative rate of 2-chlorotyrosine hydrolysis by ${\beta}-tyrosinase$ was 70.7, that of 2-bromotyrosine was 39.0, and that of 2-iodotyrosine was 12.6 against 100 of tyrosine, respectively. The rate of hydrolysis appeared to be decreased in the order of chlorine, bromine and iodine, that is, by increasing the atomic radius or by decreasing the electronegativity. But 3-iodotyrosine was not hydrolyzed by the enzyme. 4) The activity of ${\beta}-tyrosinase$ was inhibited by phenol markedly. Of the halogenated phenols, o-, or m-chlorophenol and o-bromophenol gave marked inhibition on the enzyme action, however inhibition by iodophenol was not strong. Plotting by Lineweaver-Burk method, a mixed-type inhibition by m-chlorophenol was observed and its Ki value was found to be $5.46{\times}10^{-4}M$. 5) During the synthesizing reaction of 2-bromotyrosine by the enzyme, sequential addition of substrate which was m-bromophenol with time intervals and in a small amount resulted in better yield of the product. 6) The halogenated tyrosines which were produced by ${\beta}-tyrosinase$ from pyruvate, ammonia and m-halogenated phenols were analysed to determine their molecular structures by element analysis, NMR spectroscopy, mass spectrometry, and IR spectroscopy. The result indicated that they were 2-chloro-L-tyrosine, 2-bromo-L-tyrosine, and 2-iodo-L-tyrosine, respectively.

  • PDF