• 제목/요약/키워드: Broilers performance

검색결과 480건 처리시간 0.025초

Evaluation of light-emitting diode colors and intensities on slaughter performance, meat quality and serum antioxidant capacity in caged broilers

  • Zichao Tan;Chuanfeng Zhou;Xueping Shi;Lihua Wang;Shubai Wang
    • Animal Bioscience
    • /
    • 제36권5호
    • /
    • pp.731-739
    • /
    • 2023
  • Objective: This study was to evaluate the interaction of three different light-emitting diode (LED) light colors (white, green, and blue) and three intensities (5, 10, and 15 lx) on slaughter performance, meat quality and serum antioxidant capacity of broilers raised in three-layer cages. Methods: A total of 648 (8-days-old) male broiler chicks (Cobb-500) were randomly assigned in 3×3 factorially arranged treatments: three light colors (specifically, white, blue, and green) and three light intensities (namely, 5, 10, and 15 lx) for 35 days. Each treatment consisted of 6 replicates of 12 chicks. The test lasted for 35 days. Results: The semi-eviscerated weight percentage (SEWP) in 5 lx white was higher than that in 15 lx (p<0.01). The eviscerated weight percentage (EWP) (p<0.05) and water-loss percentage (WLP) (p<0.01) decreased in 10 lx white light than those in green light. Under blue light, the content of hypoxanthine (Hx) in muscle was lower than that under white and green light (p<0.01). The content of malondialdehyde (MDA) in 15 lx blue light was higher than that in 10 lx green light (p<0.05). Light color had an extremely significant effect on thigh muscle percentage, WLP, Hx, and crude protein content (p<0.01). Light intensity had a significant effect on SEWP (p<0.05), EWP (p<0.05), lightness (L*) value (p<0.05), WLP (p<0.01), and the contents of superoxide dismutase (p<0.05), MDA (p<0.01), glutathione peroxidase (p<0.01). Conclusion: Using white LED light with 10 lx light intensity can significantly improve the chicken quality of caged Cobb broilers, improve the content of inosine acid in chicken breast and enhance the antioxidant capacity of the body. We suggest that the broiler farm can use 10 lx white LED light source for lighting in 8 to 42 days.

Effect of enzymolytic soybean meal supplementation on performance, nitrogen excretion, serum biochemical parameters and intestinal morphology in broilers fed low-protein diets

  • Xin Zhu;Kai Gao;Ziyi Zhang;Haiying Liu;Guiqin Yang
    • Animal Bioscience
    • /
    • 제36권11호
    • /
    • pp.1718-1726
    • /
    • 2023
  • Objective: The objective of this study was to investigate the effect of supplementation with enzymolytic soybean meal (ESBM) on broilers fed low crude protein (CP) diets. Methods: A total of 360 one-day-old broilers were randomly assigned to six treatments with 6 replicates per treatment and 10 chicks per replicate for a period of 42 days. Chicks were fed a basal standard high-CP diet as a positive control (PC), a low-CP diet (reducing 10 g/kg CP from the PC) as a negative control (NC), or an NC + 0.5%, 1.0%, 1.5%, or 2.0% ESBM diet. Results: Compared to chicks fed the PC, chicks fed the NC had a decreased body weight gain (BWG, p<0.05) from 1 to 42 days, but supplementation with 2.0% ESBM restored BWG (p<0.05) and even linearly improved the feed conversion rate (FCR, p<0.05). Digestibility of CP and ether extract was increased (p<0.05) in chicks fed a 1.0% ESBM diet compared to the PC. With increasing levels of ESBM, nitrogen (N) excretion decreased (p<0.05). The addition of ESBM to the diet did not affect (p>0.05) serum concentrations of total protein, albumin and total cholesterol but led to a descending trend in triglycerides and an ascending trend in calcium and urea N at 42 days (p<0.10). There were no differences (p>0.05) in villus height (VH), crypt depth (CD), and VH/CD (V/C) of the duodenum and jejunum between the PC and NC at both 21 days and 42 days, while increasing dietary ESBM levels linearly (p<0.05) decreased CD and increased V/C of the duodenum and jejunum at both 21 days and 42 days. Conclusion: The findings indicated that ESBM could be used in broiler low-CP diets to improve production performance, decrease N excretion, and enhance intestinal health.

Riboflavin and Bacillus subtilis effects on growth performance and woody-breast of Ross 708 broilers with or without Eimeria spp. challenge

  • Sabin, Poudel;George T., Tabler;Jun, Lin;Wei, Zhai;Li, Zhang
    • Journal of Animal Science and Technology
    • /
    • 제64권3호
    • /
    • pp.443-461
    • /
    • 2022
  • This study was conducted to assess the effects of the dietary supplementation of riboflavin (as a bile salt hydrolase [BSH] inhibitor) and Bacillus subtilis on growth performance and woody breast of male broilers challenged with Eimeria spp. Intestinal bacteria, including supplemented probiotics, can produce BSH enzymes that deconjugate conjugated bile salts and reduce fat digestion. A 3 × 2 × 2 (riboflavin × Bacillus subtilis × Eimeria spp. challenge) factorial arrangement of treatments in randomized complete block design was used. On d 14, birds were gavaged with 20× doses of commercial cocci vaccine (CoccivacR -B52, Merck Animal Health, Omaha, NE). Dietary treatment of riboflavin and B. subtilis did not affect body weight (BW), body weight gain (BWG), and feed conversion (FCR) d 0 to 14 and overall d 0 to 41. Eimeria spp challenge reduced BWG, feed intake (FI), and increased FCR between d 14 to 28, but increased BWG and lowered FCR between d 28 to 35. There were no effects of the Eimeria spp. challenge on the overall d 0 to 41 FCR and FI, but BWG was reduced. Eimeria spp. challenge increased the abdominal fat pad weight and slight woody breast incidences on processed birds on d 42. Dietary inclusion of B. subtilis and riboflavin at tested levels did not help birds to mitigate the negative impact of Eimeria spp. challenge to enhance the growth performance.

육계 사료 내 박테리오파지 CP의 첨가가 생산성, 영양소 소화율, 혈액특성, 도체특성 및 분내 미생물 조성에 미치는 영향 (Effects of Dietary Supplementation of Bacteriophage CP on Growth Performance, Nutrient Digestibility, Blood Profiles, Carcass Characteristics and Fecal Microflora in Broilers)

  • 백희엽;김재원;김정언;김인호
    • 한국가금학회지
    • /
    • 제40권4호
    • /
    • pp.283-290
    • /
    • 2013
  • 본 연구는 박테리오파지의 급여가 육계의 생산성, 영양소 소화율, 혈액 특성, 장기무게 및 분내 미생물 조성에 미치는 영향을 알아보기 위해 시험을 실시하였다. 사양 시험은 1일령 ROSS 308(♂, ♀) 340수 공시하였고, 시험 개시 체중은 $41.14{\pm}0.17g$으로 31일간 실시하였다. 시험 설계는 1) CON(basal diet), 2) CP05(CON + bacteriophage CP 0.05%), 3)CP10(CON + bacteriophage CP 0.10%), 4) CP15(CON + bacteriophage CP 0.15%)로 4개 처리를 하여 처리당 5반복, 반복당 17수씩 완전 임의 배치하였다. 1~14일령의 생산성에 있어서는 처리구 간 유의적 차이가 없었다. 그러나 15~31일령에 있어서는 증체량 및 사료 섭취량에서 CP15 처리구가 CON 처리구보다 높게 나타났고, 전체 시험 기간 동안의 증체량에 있어서도 CP10 및 CP15 처리구가 CON 처리구보다 유의적으로 높게 나타났다. 영양소 소화율 및 혈액 특성에 있어서 처리구 간 차이를 나타내지 않았다. 도체 특성 중 가슴육의 보수력 있어서 박테리오파지를 첨가한 처리구가 CON 처리구보다 유의적으로 높게 나타났고, 장기 무게 중 F낭의 무게에 있어 CP05 처리구가 CON 처리구에 비해 유의적으로 높게 나타났다. 분내 미생물 조성에 있어서는 처리구간 유의적 차이를 나타내지 않았다. 결론적으로, 육계 사료 내박테리오파지를 첨가 시 증체량을 향상시키고, F낭의 무게를 증가시키며, 가슴육의 보수력이 증가하는 효과를 나타내었다.

사료내 Phytase 첨가가 육계의 생산성과 분뇨 배설량에 미치는 영향 (Effect of Dietary Phytase on Growth Performance and Excreta Excretion of Broilers)

  • 황보종;홍의철;강보석;김학규;허강녕;추효준;김원
    • 한국가금학회지
    • /
    • 제38권4호
    • /
    • pp.255-263
    • /
    • 2011
  • 본 시험은 사료 내 phytase 첨가가 육계 암수의 생산성과 분뇨 배설량 및 질소와 인의 배설량에 미치는 영향을 구명하기 위해 수행하였다. 공시계는 1일령 Ross종 육계(평균체중 $44.7{\pm}1.5$ g) 192수를 선별하였으며, 육계의 성별(male, female)과 phytase 첨가 유무(0, 300 FTU/kg)에 따라 $2{\times}2$의 총 4처리구, 처리당 4반복, 반복당 12수씩 체중별로 완전임의 배치하였다. 시험 사료는 육계 초기(0~2주), 전기(2~4주)와 후기(4~7주)의 기초 사료에 phytase를 첨가하였다. 증체량은 수컷이 암컷에 비해 높게 나타났으며, phytase 첨가구가 높게 나타났다(P<0.05). 사료 섭취량은 수컷이 암컷에 비해 높았으며, phytase 첨가 유무에 따른 차이는 없었다(P>0.05). 사료 효율은 phytase 첨가구의 수컷에서 가장 높게 나타났다(P<0.05). 분뇨 배설량은 수컷이 높게 나타났으며, phytase 첨가구에서 감소하였다(P<0.05). 질소와 인의 배설량은 수컷이 높았으며, phytase 무첨가구가 첨가구에 비해 높았다(P<0.05). 따라서, 사료 내 파이타제 첨가 시 육계의 생산성이 개선되고, 분뇨, 질소 및 인의 배설량이 감소된다.

Effect of Bacillus amyloliquefaciens-based Direct-fed Microbial on Performance, Nutrient Utilization, Intestinal Morphology and Cecal Microflora in Broiler Chickens

  • Lei, Xinjian;Piao, Xiangshu;Ru, Yingjun;Zhang, Hongyu;Peron, Alexandre;Zhang, Huifang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권2호
    • /
    • pp.239-246
    • /
    • 2015
  • The present study was conducted to evaluate the effect of the dietary supplementation of Bacillus amyloliquefaciens-based direct-fed microbial (DFM) on growth performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. A total of two hundred and eighty eight 1-d-old Arbor Acres male broilers were randomly allocated to one of four experimental treatments in a completely randomized design. Each treatment was fed to eight replicate cages, with nine birds per cage. Dietary treatments were composed of an antibiotic-free basal diet (control), and the basal diet supplemented with either 15 mg/kg of virginiamycin as antibiotic growth promoter (AGP), 30 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 30) or 60 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 60). Experimental diets were fed in two phases: starter (d 1 to 21) and finisher (d 22 to 42). Growth performance, nutrient utilization, morphological parameters of the small intestine and cecal microbial populations were measured at the end of the starter (d 21) and finisher (d 42) phases. During the starter phase, DFM and virginiamycin supplementation improved the feed conversion ratio (FCR; p<0.01) compared with the control group. For the finisher phase and the overall experiment (d 1 to 42) broilers fed diets with the DFM had better body weight gain (BWG) and FCR than that of control (p<0.05). Supplementation of virginiamycin and DFM significantly increased the total tract apparent digestibility of crude protein (CP), dry matter (DM) and gross energy during both starter and finisher phases (p<0.05) compared with the control group. On d 21, villus height, crypt depth and villus height to crypt depth ratio of duodenum, jejunum, and ileum were significantly increased for the birds fed with the DFM diets as compared with the control group (p<0.05). The DFM 30, DFM 60, and AGP groups decreased the Escherichia coli population in cecum at d 21 and d 42 compared with control group (p<0.01). In addition, the population of Lactobacillus was increased in DFM 30 and DFM 60 groups as compared with control and AGP groups (p<0.01). It can be concluded that Bacillus amyloliquefaciens-based DFM could be an alternative to the use of AGPs in broilers diets based on plant protein.

Influence of Palm Kernel Meal Inclusion and Exogenous Enzyme Supplementation on Growth Performance, Energy Utilization, and Nutrient Digestibility in Young Broilers

  • Abdollahi, M.R.;Hosking, B.J.;Ning, D.;Ravindran, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권4호
    • /
    • pp.539-548
    • /
    • 2016
  • The objective of the present study was to investigate the influence of palm kernel meal (PKM) inclusion and exogenous enzyme supplementation on growth performance, nitrogen-corrected apparent metabolizable energy (AMEn), coefficient of apparent ileal digestibility (CAID) and total tract retention of nutrients in young broilers fed corn-based diets. Four inclusion levels of PKM (no PKM [PKM0], 8% [PKM8], 16% [PKM16], and 24% [PKM24]) and two enzyme additions were evaluated in a $4{\times}2$ factorial arrangement of treatments. A total of 384, one-d-old male broilers (Ross 308) were individually weighed and allocated to 48 cages (eight broilers/cage), and cages were randomly assigned to eight dietary treatments. Results indicated that the inclusion of 8% and 16% PKM increased (p<0.05) the weight gain compared to the PKM0 diet. Birds fed the PKM8 diets had the highest (p<0.05) feed intake. Weight gain and feed intake were severely reduced (p<0.05) by feeding the PKM24 diet. Enzyme supplementation increased weight gain (p<0.05), independent of PKM inclusion level. In PKM0 and PKM8 diets, enzyme addition significantly (p<0.05) lowered feed conversion ratio (FCR); whereas enzyme addition had no effect on FCR of birds fed PKM16 and PKM24 diets. In PKM0 and PKM16 diets, enzyme addition significantly (p<0.05) increased CAID of nitrogen and energy but had no effect in the PKM8 and PKM24 diets. Inclusion of PKM into the basal diet, irrespective of inclusion level, enhanced (p<0.05) starch and fat digestibility. Inclusion of PKM at 16% and 24% resulted in similar CAID of neutral detergent fiber (NDF) but higher (p<0.05) than that of the PKM0 and PKM8 diets. Enzyme addition, regardless of the level of PKM inclusion, significantly (p<0.05) increased CAID of NDF. There was a significant (p<0.05) decrease in AMEn with PKM inclusion of 24%. The present data suggest that inclusion of PKM in broiler diets could be optimized if PKM-containing diets are formulated based on digestible amino acid contents and supplemented with exogenous enzymes. If amino acid digestibility and AME of PKM considered in the formulation, it can be included in broiler diets up to 16% with no deleterious effects on growth performance.

Xylanase supplementation in energy-deficient corn-based diets: impact on broiler growth, nutrient digestibility, chyme viscosity and carcass proximates

  • Bernadette Gerpacio Sta. Cruz;Jun Seon Hong;Myunghwan Yu;Elijah Ogola Oketch;Hyeonho Yun;Dinesh D. Jayasena;Jung-Min Heo
    • Animal Bioscience
    • /
    • 제37권7호
    • /
    • pp.1246-1254
    • /
    • 2024
  • Objective: The goal of the current study was to investigate the impact of various concentrations of xylanase in energy-deficient corn-based diets on the growth performance, carcass characteristics, nutrient digestibility, and digesta viscosity in broilers from 7 to 35 days of age. Methods: A total of 280 seven-day-old Ross 308 broilers were randomly allocated to one of the five dietary treatments following a completely randomized design with 8 replicates and 7 birds per cage. The treatments were: i) positive control (PC, without xylanase); ii) NC-1 (80 kcal/kg ME reduced from PC); iii) NC-2 (100 kcal/kg ME reduced from PC); iv) NCX-1 (NC-1 + 2,000 U/kg xylanase); and v) NCX-2 (NC-2 + 3,000 U/kg xylanase). Body weight, weight gain, feed intake, and feed conversion ratio were determined weekly to evaluate growth performance. One bird per pen was sacrificed for ileal digesta collection to determine the viscosity and digestibility of energy, dry matter, crude protein on days 24 and 35, however breast and leg meat samples were obtained for proximate analysis (moisture, crude protein, fat, and ash) on day 35. Results: Birds fed diets supplemented with xylanase regardless of the amount had higher (p<0.05) body weights, daily gains, and improved feed efficiency compared to NC diets all throughout the experimental period. Feed intake was not affected (p>0.05) by the addition of xylanase. Moreover, lowered (p<0.05) viscosity of the ileal digesta were observed upon xylanase inclusion in the diets compared to the birds fed NC diets on day 24. Ileal nutrient digestibility and meat proximate composition were not affected (p>0.05) by xylanase. Conclusion: The present study indicated that the xylanase at 2,000 U/kg and 3,000 U/kg levels compensates for the 80 kcal/kg and 100 kcal/kg dietary energy levels, respectively, without having adverse effects on the growth performance, carcass characteristics, nutrient digestibility, and digesta viscosity of broilers.

Dietary L-carnitine Influences Broiler Thigh Yield

  • Kidd, M.T.;Gilbert, J.;Corzo, A.;Page, C.;Virden, W.S.;Woodworth, J.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권5호
    • /
    • pp.681-685
    • /
    • 2009
  • L-carnitine promotes mitochondrial ${\beta}$-oxidation of long chain fatty acids and their subsequent transport across the inner mitochondrial membrane. Although the role of L-carnitine in fatty acid metabolism has been extensively studied, its role in live performance and carcass responses of commercial broilers is less understood. The objective of this research was to determine if Lcarnitine fed at various levels in diets differing in CP and amino acids impacted on live performance and carcass characteristics of commercial broilers. Two floor pen experiments were conducted to assess the effect of dietary L-carnitine in grower diets. In Exp. 1, Ross${\times}$Hubbard Ultra Yield broilers were placed in 48 floor pens (12 birds/pen) and fed common diets to d 14. A two (0 or 50 ppm Lcarnitine) by three (173, 187, and 202 g/kg CP) factorial arrangement of treatments was employed from 15 to 35 d of age (8 replications/treatment). An interaction (p<0.05) in carcass yield indicated that increasing CP (187 g/kg) resulted in improved yield in the presence of L-carnitine. Increasing CP from 173 to 202 g/kg increased (p<0.05) BW gain and decreased (p<0.05) feed conversion and percentage abdominal fat. Feeding dietary L-carnitine increased back-half carcass yield which was attributable to an increase (p<0.05) in thigh, but not drumstick, yield relative to carcass. In Exp. 2, $Ross{\times}Ross$ 708 broilers were fed common diets until 29 d. From 30 to 42 d of age, birds were fed one of seven diets: i) 200 g/kg CP, 0 ppm L-carnitine; ii) 200 g/kg CP, 40 ppm L-carnitine; iii) 180 g/kg CP, 0 ppm L-carnitine; iv) 180 g/kg CP, 10 ppm L-carnitine; v) 180 g/kg CP, 20 ppm L-carnitine; vi) 180 g/kg CP, 30 ppm L-carnitine; and vii) 180 g/kg CP, 40 ppm L-carnitine (6 replications of 12 birds each). BW gain, feed conversion, mortality (30 to 42 d), and carcass traits (42 d) were measured on all birds by pen. There were no treatment differences (p<0.05). However, the addition of 40 ppm L-carnitine in the 200 g CP/kg diet increased (p = 0.06) thigh yields relative to BW in comparison to birds fed diets without L-carnitine, which was further confirmed via a contrast analysis (0 vs. 40 ppm L-carnitine in the 200 and 180 g CP/kg diets; p<0.05). These results indicated that dietary L-carnitine may heighten metabolism in dark meat of commercial broilers resulting in increased relative thigh tissue accretion without compromising breast accretion.

Effects of Dietary Octacosanol on Growth Performance, Carcass Characteristics and Meat Quality of Broiler Chicks

  • Long, L.;Wu, S.G.;Yuan, F.;Wang, J.;Zhang, H.J.;Qi, G.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권10호
    • /
    • pp.1470-1476
    • /
    • 2016
  • Octacosanol, which has prominent physiological activities and functions, has been recognized as a potential growth promoter in animals. A total of 392 1-d-old male Arbor Acres broiler chicks with similar body weight were randomly distributed into four dietary groups of seven replicates with 14 birds each supplemented with 0, 12, 24, or 36 mg octacosanol (extracted from rice bran, purity >92%)/kg feed. The feeding trial lasted for six weeks and was divided into the starter (day 1 to 21) and the grower (day 22 to 42) phases. The results showed that the feed conversion ratio (FCR) was significantly improved in broilers fed a diet containing 24 mg/kg octacosanol compared with those fed the control diet in the overall phase (day 1 to 42, p = 0.042). The average daily gain and FCR both showed linear effects in response to dietary supplementation of octacosanol during the overall phase (p = 0.031 and 0.018, respectively). Broilers fed with 24 or 36 mg/kg octacosanol diet showed a higher eviscerated yield, which increased by 5.88% and 4.26% respectively, than those fed the control diet (p = 0.030). The breast muscle yield of broilers fed with 24 mg/kg octacosanol diet increased significantly by 12.15% compared with those fed the control diet (p = 0.047). Eviscerated and breast muscle yield increased linearly with the increase in dietary octacosanol supplementation (p = 0.013 and 0.021, respectively). Broilers fed with 24 or 36 mg/kg octacosanol diet had a greater (p = 0.021) $pH_{45min}$ value in the breast muscle, which was maintained linearly in response to dietary octacosanol supplementation (p = 0.003). There was a significant decrease (p = 0.007) in drip loss value between the octacosanol-added and the control groups. The drip loss showed linear (p = 0.004) and quadratic (p = 0.041) responses with dietary supplementation of octacosanol. These studies indicate that octacosanol is a potentially effective and safe feed additive which may improve feed efficiency and meat quality, and increase eviscerated and breast muscle yield, in broiler chicks. Dietary supplementation of octacosanol at 24 mg/kg diet is regarded as the recommended dosage in the broilers' diet.