• 제목/요약/키워드: Broiler Breast Fillet

검색결과 4건 처리시간 0.027초

Instrumental Methods for Differentiation of Frozen-thawed from Fresh Broiler Breast Fillets

  • Jung, Samooel;Lee, Jae-Cheong;Jung, Yeon-Kuk;Kim, Min-Kyu;Son, Hwa-Young;Jo, Cheo-Run
    • 한국축산식품학회지
    • /
    • 제31권1호
    • /
    • pp.27-31
    • /
    • 2011
  • To differentiate between frozen-thawed and fresh broiler breast fillets, different methods such as optical microscopy and measurement of drip loss, pH, torrymeter and K-value were performed. A total of 10 samples of fresh and frozen-thawed breast fillets were stored in a refrigerator ($4^{\circ}C$) for 5 d. Optical microscopy of the frozen-thawed breast fillets found structural changes caused by ice crystals, which may have significantly increased drip loss compared to fresh breast fillet. The pH and K-value could not be distinguished between the two breast fillets during storage. However, the torrymeter values of the fresh and frozen-thawed breast fillets were significantly different (p<0.05). The results indicate that both optical microscopy and torrymeter measurement can be effective methods for differentiating between fresh and frozen-thawed breast fillets. However, optical microscopy may be difficult to implement in the marketplace since it requires much time and effort. Thus, the determination of the torrymeter value is the easiest and most rapid instrumental method among those tested for the differentiation of frozen-thawed chicken breast fillet from fresh one.

Growth Performance and Meat Quality of Broiler Chickens Supplemented with Bacillus licheniformis in Drinking Water

  • Liu, Xiaolu;Yan, Hai;Lv, Le;Xu, Qianqian;Yin, Chunhua;Zhang, Keyi;Wang, Pei;Hu, Jiye
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권5호
    • /
    • pp.682-689
    • /
    • 2012
  • A feeding trial was conducted to investigate effects of Bacillus licheniformis on growth performance and meat quality of broilers. Nine hundred one-d-old broiler chicks were randomly assigned to 3 experimental groups with three replicate pens of 100 broiler chicks. Three treatments were i) control, ii) basal diets supplemented with 1 ml of B. licheniformis for each in feed water per day iii) basal diets supplemented with 2 ml of B. licheniformis per chick in feed water per day. The supplementation of B. licheniformis significantly increased body weight in grower chickens (p<0.05), and significantly improved the feed conversion in 3 to 6 and 0 to 6 wk feeding period compared with the control group (p<0.05). Additionally, the supplement also resulted in increased protein and free amino acid contents, and decreased fat content in chicken breast fillet (p<0.05). Furthermore, improvement in sensory attributes was observed in broilers fed with the probiotic. In conclusion, B. licheniformis treatments resulted in a significant increase (p<0.05) in broiler productivity based on an index taking into account daily weight gain and feed conversion rate. Meanwhile, the probiotic contributed towards an improvement of the chemical, nutritional and sensorial characteristics of breast fillet. Overall, the study indicates that B. licheniformis can be used as a growth promoter and meat quality enhancer in broiler poultry.

White striping degree assessment using computer vision system and consumer acceptance test

  • Kato, Talita;Mastelini, Saulo Martiello;Campos, Gabriel Fillipe Centini;Barbon, Ana Paula Ayub da Costa;Prudencio, Sandra Helena;Shimokomaki, Massami;Soares, Adriana Lourenco;Barbon, Sylvio Jr.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권7호
    • /
    • pp.1015-1026
    • /
    • 2019
  • Objective: The objective of this study was to evaluate three different degrees of white striping (WS) addressing their automatic assessment and customer acceptance. The WS classification was performed based on a computer vision system (CVS), exploring different machine learning (ML) algorithms and the most important image features. Moreover, it was verified by consumer acceptance and purchase intent. Methods: The samples for image analysis were classified by trained specialists, according to severity degrees regarding visual and firmness aspects. Samples were obtained with a digital camera, and 25 features were extracted from these images. ML algorithms were applied aiming to induce a model capable of classifying the samples into three severity degrees. In addition, two sensory analyses were performed: 75 samples properly grilled were used for the first sensory test, and 9 photos for the second. All tests were performed using a 10-cm hybrid hedonic scale (acceptance test) and a 5-point scale (purchase intention). Results: The information gain metric ranked 13 attributes. However, just one type of image feature was not enough to describe the phenomenon. The classification models support vector machine, fuzzy-W, and random forest showed the best results with similar general accuracy (86.4%). The worst performance was obtained by multilayer perceptron (70.9%) with the high error rate in normal (NORM) sample predictions. The sensory analysis of acceptance verified that WS myopathy negatively affects the texture of the broiler breast fillets when grilled and the appearance attribute of the raw samples, which influenced the purchase intention scores of raw samples. Conclusion: The proposed system has proved to be adequate (fast and accurate) for the classification of WS samples. The sensory analysis of acceptance showed that WS myopathy negatively affects the tenderness of the broiler breast fillets when grilled, while the appearance attribute of the raw samples eventually influenced purchase intentions.

칠면조와 육계에서 청색증 발생기전에 관한 고찰 (Degenerative myopathy of the supracoracoideus (DMS) in turkeys and broiler chickens, Review)

  • 송희종;이명우;류경선;장형관
    • 한국동물위생학회지
    • /
    • 제31권1호
    • /
    • pp.161-166
    • /
    • 2008
  • Deep pectoral myopathy (DPM), also known as Oregon muscle disease or green muscle disease, was first described in 1968 by Dickinson et al as "degenerative myopathy" in turkeys. Even though this condition was first recognized in adult meat-type turkey and chicken breeders, it is becoming more and more common in meat-type growing birds. DPM occurs exclusively in birds that have been specially selected for breast muscle development. It is generally recognized that DPM is an ischemic necrosis that develops in the deep pectoral muscle (supracoracoideus or pectoralis minor muscle) mainly because this muscle is surrounded by inelastic fascia and the sternum, which do not allow the muscle mass to swell in response to the physiological changes occurring when muscle are exercised, as in wing flapping. The lesion does not impair the general health of birds and is generally found during cut-up and deboning, moreover, it can be both unilateral or bilateral, affecting just one or both pectoralis minor muscle, respectively. No public health significance is associated to DPM, but it is aesthetically undesirable. The fillet should be removed, whereas the rest of the carcass is still fit for human consumption. However, the required trimming operations determine the downgrading of the products and produce an economic loss for the industry, especially because it affects the more valuable part of the carcass. The incidence of DPM increases with market weight in broilers, with more cases reported in higher-yielding strains and in males. Increased bird activity (flock nervousness, flightiness, struggle, and wing flapping) induced by factors such as feed or water outages, lighting programs and intensity, human activity, and excessive noises in and around chicken houses should be looked at as a trigger for the development of DPM in broiler. However, most of the studies conducted to evaluate the incidence of DPM in poultry are concerned with parental commercial breeding stocks under experimental conditions (Bianchi et al. 2006. Poult Sci 85 : 1843-1846). There is a possible genetic relationship between the selection for large-breasted birds and this condition. Management procedures that discourage excessive wing flapping would reduce the incidence (Jordan and Pattison. 1998. Poultry diseases. 398-399).