• Title/Summary/Keyword: Broadband matching

Search Result 135, Processing Time 0.028 seconds

A Sutdy on the UWB Intenna with Band-Stop Function for Mobile Handsets (대역 저지 특성을 갖는 휴대 단말기용 초소형 UWB Intenna에 관한 연구)

  • Lim, Yo-Han;Yoon, Young-Joong;Ho, Yo-Chuol;Jung, Byung-Woon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1445-1454
    • /
    • 2008
  • In this paper, small UWB antenna with band-stop function for mobile handsets is proposed. A gap between radiator and under and side ground is adjusted for small size and broadband. A radiator is folded to the back side of PCB for miniaturization and tapered feeding structure is used to enhance matching characteristic. A antenna clearance has a size of $14{\times}14\;mm^2$ and a size of radiator is $10{\times}7\;mm^2$. It covers all UWB band from 3.15 GHz to 4.75 GHz and from 7.2 GHz to 10.2 GHz for VSWR<2 and has band stop characteristic at 5.8 GHz. A maximum gain is measured as 5.85 GHz. In case conventional handset case is considered, it also covers all UWB and a maximum gain is measured from -2 dBi to -2 dBi.

Implementation of Wideband Low Noise Down-Converter for Ku-Band Digital Satellite Broadcasting (Ku-대역 광대역 디지탈 위성방송용 저 잡음하향변환기 개발)

  • Hong, Do-Hyeong;Lee, Kyung Bo;Rhee, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.115-122
    • /
    • 2016
  • In this paper, wideband Ku-band downconverter was designed to receiver digital satellite broadcasting. The low-nose downconverter was designed to form four local oscillator frequencies(9.75, 10, 10.75 and 11.3 GHz) representing a low phase noise due to VCO-PLL with respect to input signals of 10.7 to 12.75 GHz and 3-stage low noise amplifier circuit by broadband noise matching, and to select intermediate frequency bands by digital control. The developed low-noise downconverter exhibited the full conversion gain of 64 dB, and the noise figure of low-noise amplifier was 0.7 dB, the P1dB of output signal 15 dBm, and the phase noise -85 dBc@10kHz at the band 1 carrier frequency of 9.75 GHz. The low noise block downconverter(LNB) for wideband digital satellite broadcasting designed in this paper can be used for global satellite broadcasting LNB.

V-Band Power Amplifier MMIC with Excellent Gain-Flatness (광대역의 우수한 이득평탄도를 갖는 V-밴드 전력증폭기 MMIC)

  • Chang, Woo-Jin;Ji, Hong-Gu;Lim, Jong-Won;Ahn, Ho-Kyun;Kim, Hae-Cheon;Oh, Seung-Hyueb
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.623-624
    • /
    • 2006
  • In this paper, we introduce the design and fabrication of V-band power amplifier MMIC with excellent gain-flatness for IEEE 802.15.3c WPAN system. The V-band power amplifier was designed using ETRI' $0.12{\mu}m$ PHEMT process. The PHEMT shows a peak transconductance ($G_{m,peak}$) of 500 mS/mm, a threshold voltage of -1.2 V, and a drain saturation current of 49 mA for 2 fingers and $100{\mu}m$ total gate width (2f100) at $V_{ds}$=2 V. The RF characteristics of the PHEMT show a cutoff frequency, $f_T$, of 97 GHz, and a maximum oscillation frequency, $f_{max}$, of 166 GHz. The gains of the each stages of the amplifier were modified to have broadband characteristics of input/output matching for first and fourth stages and get more gains of edge regions of operating frequency range for second and third stages in order to make the gain-flatness of the amplifier excellently for wide band. The performances of the fabricated 60 GHz power amplifier MMIC are operating frequency of $56.25{\sim}62.25\;GHz$, bandwidth of 6 GHz, small signal gain ($S_{21}$) of $16.5{\sim}17.2\;dB$, gain flatness of 0.7 dB, an input reflection coefficient ($S_{11}$) of $-16{\sim}-9\;dB$, output reflection coefficient ($S_{22}$) of $-16{\sim}-4\;dB$ and output power ($P_{out}$) of 13 dBm. The chip size of the amplifier MMIC was $3.7{\times}1.4mm^2$.

  • PDF

Design of Double Bond Down Converting Mixer Using Embeded Balun Type (발룬 내장형 이중대역 하향 변환 믹서 설계 및 제작)

  • Lee, Byung-Sun;Roh, Hee-Jung;Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.141-147
    • /
    • 2008
  • This paper describes the design of frequency down converting Mixer in the receiver to use compound semiconductor and CMOS product process. The basic theory and structure of frequency down converting Mixer is surveyed, and we design mixer circuit with active balun which use the compound semiconductor and CMOS process. This mixer convert a single ended signal to differential signal at input port of RF and LO instead of matching circuit to get dual band balanced mixer structure and characteristic broadband. This designed mixer has a conversion gain $-1{\sim}-6[dB]$ at $2{\sim}6[GHz]$ bandwidths. However, the simulation of the designed mixer with active balun has the result of a 7[dB] conversion gain for -2[dBm] LO input power and -10[dBm] input P1[dB] at 5.8[GHz].

Design of a Cascaded Distributed Amplifier using Medium Power Devices (중간전력 소자를 이용한 직렬 분포형 증폭기 설계)

  • Cha, Hyeon-Won;Koo, Jae-Jin;Lim, Jong-Sik;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1817-1823
    • /
    • 2009
  • A design of cascaded distributed amplifier with a broadband amplification is described in this paper. A medium power device with 23dBm, max output power under the optimal narrow-band power matching condition is adopted for the design and fabrication of the cascaded distributed amplifier. In general, conventional distributed amplifiers with the parallel connected input ports have a low gain, and previous cascaded distributed amplifiers show a relatively low output power of 10dBm at most, which is the upper limit of small signal amplification. However, the cascaded distributed amplifier in this paper shows the gain of $18.15{\pm}0.75dB$ and output power of 20dBm over $300MHz{\sim}2GHz$ from the measurement, so it can be well adopted as a wideband driver amplifier.

Design of L-shaped Dual Inset Feeding Microstrip Stacked Patch Antenna for 2.5GHz Band (이중 L형 인셋 급전된 2.5GHz용 적층 마이크로 스트립 안테나의 설계)

  • Kim, Gun-Kyun;Kim, On;Rhee, Seung-Yeop
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.461-466
    • /
    • 2019
  • In this paper, we have studied the improvement of gain and bandwidth characteristics by using double feeding and L-shaped inset feed line matching circuit in microstrip stacked patch antenna which is widely used to broaden the gain of general microstrip antenna. The proposed structure is composed of two feeding edges of the main patch antenna, each of them are connected to a feeding line having an L shaped inset feeder. And the parasitic patch is placed at a proper distance above the main patch. The size of the main patch is designed so that the resonance frequency is close to the center frequency of the target frequency band. The experimental results show that the bandwidth was increased more than 180MHz in the 2.3-2.7 GHz band, which is more interesting than the single feed, and the gain improvement of 2.5dBi was obtained at 2.7GHz.

A Study on Design and Interpretation of Pattern Laser Coordinate Tracking Method for Curved Screen Using Multiple Cameras (다중카메라를 이용한 곡면 스크린의 패턴 레이저 좌표 추적 방법 설계와 해석 연구)

  • Jo, Jinpyo;Kim, Jeongho;Jeong, Yongbae
    • Journal of Platform Technology
    • /
    • v.9 no.4
    • /
    • pp.60-70
    • /
    • 2021
  • This paper proposes a method capable of stably tracking the coordinates of a patterned laser image in a curved screen shooting system using two or more channels of multiple cameras. This method can track and acquire target points very effectively when applied to a multi-screen shooting method that can replace the HMD shooting method. Images of curved screens with severe deformation obtained from individual cameras are corrected through image normalization, image binarization, and noise removal. This corrected image is created and applied as an Euclidean space map that is easy to track the firing point based on the matching point. As a result of the experiment, the image coordinates of the pattern laser were stably extracted in the curved screen shooting system, and the error of the target point position of the real-world coordinate position and the broadband Euclidean map was minimized. The reliability of the proposed method was confirmed through the experiment.

Design of Low-loss Microstrip-to-Waveguide Inline Transition Structure (저손실 마이크로스트립-도파관 inline 전이구조 설계 )

  • Young-Gon Kim;Han-Chun Ryu;Se-Hoon Kwon;Seon-Keol Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.29-34
    • /
    • 2023
  • A clear and efficient design method for a microstrip-to-waveguide inline transition, which is based on an analytical model, is presented. The transition consists of three parts: a microstrip-to-SIW transition, a dielectric-loaded waveguide with substrate-height, and a stepped-height waveguide. The shape of the transitional structure is formed for impedance matching. Two equivalent type0s of dielectric-loaded transitional structures are proposed. The design method is applicable to any size of the waveguide, but a design method of two Ka-band transitions is demonstrated. The proposed transitions, in a back-to-back configuration, have less than 1.2 dB insertion loss and more than 15 dB return loss from 29.8 GHz to 38.2 GHz.

The Design of Broadband Ultrasonic Transducers for Fish Species Identification - Dual Resonance Design of a Ultrasonic Transducer Using a Single Acoustic Matching Layer - (어종식별을 위한 광대역 초음파 변환기의 설계 II - 단일음향정합층을 이용한 이중공진형 변환기의 설계 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.74-84
    • /
    • 1998
  • A doubly resonant ultrasonic transducer has been designed as an attempt to increase the bandwidth of underwater transducers. The dual resonance conditions were accomplished by attaching a single acoustic matching layer on the front face of a Tonpilz transducer consisted of an aluminum head, a piezoelectric ring, a brass tail and a prestress bolt. A modified Mason's model was used for the performance analysis and the design of transducers, and the constructed transducers were tested experimentally and numerically by changing the impedances and thicknesses of the head, tail and matching layers in the water tank. Two distinct resonance peaks in the transmitting voltage response(TVR) of a developed transducer were observed at 34.3 and 40.4 kHz, respectively, with the difference frequency of 6.1kHz and the center frequency of 37.2kHz. The values of TVR at these frequencies were 136.5 dB re $1\;\muPa/V$ at 34.3 kHz and 136.8 dB re $1\;\muPa/V$ at 40.4 kHz, respectively. Reasonable agreement between the experimental results and the numerical results was achieved. From this result, it is expected that the generation of the distinct resonances at any two desired frequencies can be achieved through the proper choice of the matching layer to provide the impedance transformation between the transducer and the medium.

  • PDF

Estimation of Refractive Index in MIR range from the Reflectance Measurements for IR Optics Materials (반사율 측정에 의한 적외선 광학재료의 중적외선 굴절률 추정)

  • Jin, Doo-han;Jeong, Kyung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.411-416
    • /
    • 2020
  • An optical arrangement has been set inside a photo-spectrometer to measure the reflectance of IR optics materials in mid IR range. The optical arrangement consists of equally spaced 4 gold coated full reflecting mirrors with the incidence angle of 45°. Baseline beam intensity IB has been measured while the beam proceeds through the 4 mirrors. Reflectance of a mirror has been estimated from the IB. And the beam intensity IS with the specimen in the optical path has been measured with the 4th mirror replaced with the specimen. Reflectance of the specimen has been estimated from the value of IS/IB. Then the estimated reflectance has been put in Fresnel equation relating reflectance and refractive index(RI) to estimate the RI of the material. Measurement has been made for sapphire, germanium, magnesium fluoride, and zinc sulfide. The estimated RI of the materials are closely matching with reference data and the maximum difference less than 2% over the wavelength range 3-5㎛ for all materials tested. As an FT-IR photo-spectrometer with a broadband wavelength infrared light source is used, this method has the advantage of measuring the refractive index at multiple wavelengths in a single measurement.