• Title/Summary/Keyword: Brittle mode

Search Result 200, Processing Time 0.027 seconds

An Experimental Study of Ultra-precision Turning of High Transmittance Optical Glass(SF57HHT) (고투과율 광학유리(SF57HHT) 초정밀절삭의 실험적 연구)

  • Kim, Min-Jae;Lee, June-Key;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.191-195
    • /
    • 2012
  • Heavy flint optical glass(SF57HHT) is new material that has extremely high transmittance. Due to brittleness and high hardness, optical glass is one of the most difficult to materials for ultra-precision turning. According to the hypothesis of ductile machining, all materials, regardless of their hardness and brittleness, will undergo transition from brittle to ductile machining region below critical undefromed chip thickness. In this study, cutting test was carried out to evaluate cutting performance of heavy flint glass using ultra-precision machine with single crystal diamond bite. The machined workpiece surface topography, tool wear and surface roughness were examined using AFM and SEM. The experimental results indicate that the machining mode become the brittle mode to ductile mode, when the maximum undeformed chip thinkness is large than critical value. Tool wear mainly occurs on the flank face and its wear mechanism is dominated by abrasion. This study demonstrates the feasibility of SF57HHT by diamond turning.

The Failure Analysis of Boiler Tube for High Temperature and High Pressure Service (고온고압용 보일러 튜브의 파손 원인분석)

  • Lee, Jong-Hun;Yu, Wi-Do
    • 연구논문집
    • /
    • s.30
    • /
    • pp.121-128
    • /
    • 2000
  • The failed tube received for this study has been used for approximately 10 year at $330^{\circ}C$ in a steam production boiler tube was fractured in the transversed direction to tube length, and fracture mode was typically intergranulas type without the plastic deformation. The fracture surface was covered by the oxide scale formed from the intermal high pressure steam at high temperature. The microstructure was not nearly thermal-degraded during the service. From this result, we can conclude that the oxide film was proferentialy formed into the grainboundary and this grainboundary oxide film was brittle-fractured by the thermal stress in the longitudinal direction to the tube brittle intergranular fracture mode.

  • PDF

Reliability of Sn-Ag-Cu Solder Joint on ENEPIG Surface Finish: 2. Effects of time of Pd activation (ENEPIG 표면처리에서의 Sn-Ag-Cu 솔더조인트 신뢰성: 2. Pd 촉매 시간의 영향)

  • Huh, Seok-Hwan;Lee, Ji-Hye;Ham, Suk-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.51-56
    • /
    • 2014
  • The reliability of solder joint is significantly affected by the property of surface finish. This paper reports on a study of high speed shear energy and failure mode for Sn-4.0wt%Ag-0.5wt%Cu (SAC405) solder joints with the time of Pd activation. The nodule size of electroless Ni-P deposit increased with increasing the time of Pd activation. The roughness (Ra) of electroless Ni-P deposit decreased with increasing the time of Pd activation. Then, with $HNO_3$ vapor, the quasi-brittle and brittle mode of SAC405 solder joint decreased with increasing the time of Pd activation. This results indicate that the increase in the Pd activation time for Electroless Ni/ Electroless Pd/ Immersion Au (ENEPIG) surface finish play a critical role for improving the robustness of SAC405 solder joint.

A Study on the Fracture behavior in Silicon Wafer using the Ultra-Precision Micro Positioning System (초미세 위치결정시스템을 이용한 실리콘 웨이퍼의 파괴거동에 관한 연구)

  • 이병룡
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.38-44
    • /
    • 2000
  • The background of this study lies in he investigation of the formation mechanism of ductile mode(nkanometer-size) chips of brittle materials such as fine ceramics glass and silicon. As the first step to achieve this purpose this paper intends to observe the micro-deformation behavior of these materials in sub${\mu}{\textrm}{m}$ depth indentation tests using a diamond indentor. In this study it was developed Ultra-Micro Indentation. Device using the PZT actuator. Experimentally by using the Ultra-Micro Indentation device the micro fracture behavior of the silicon wafer was investigated. It was possible that ductile-brittle transition point in ultimate surface of brittle material can be detected by adding an acoustic emission sensor system to the Ultra-Micro Indentation appartus.

  • PDF

Impact Damage on Brittle Materials with Small Spheres (I)

  • Woo, Su-Chang;Kim, Moon-Saeng;Shin, Hyung-Seop;Lee, Hyeon-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.30-36
    • /
    • 2003
  • Brittle materials such as glasses and ceramics, which are very weak under impact loading, show fragile failure mode due to their low fracture toughness and crack sensitivity. When brittle materials are subjected to impact by small spheres, high contact pressure occurs at the impacted surface causing local damage on the specimen. This damage is a dangerous factor in causing the final fracture of structures. In this research, the crack propagation process of soda-lime glass by the impact of small spheres is explained and the effects of several constraint conditions for impact damage were studied by using soda-lime glass; that is, the effects for the materials and sizes of impact ball, thickness of specimen and residual strength were evaluated. Especially, this research has focused on the damage behavior of ring cracks, cone cracks and several other kinds of cracks.

A Study on the Die Set Design for Multi-Hole Extrusion Process Using Taguchi Method (다구찌 방법을 이용한 다발압출 금형설계에 관한 연구)

  • 조성진;이재원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.322-325
    • /
    • 2000
  • In the previous report1), the grinding characteristics of quartz were investigated. In this paper, the grinding mechanisms of brittle materials including ceramics and quartz are modeled and a new parameter SDR(Surface roughness Direction Ratio) is proposed to characterize the grinding mechanisms of such materials. A set of experiments were performed to verify the effectiveness of the suggested parameter. The experimental results indicate that the plastic deformation is the dominant material removal mode at the grinding conditions which show the higher value of SDR. In the case of quartz, the material was removed by brittle fracture in a lower value of SDR and by plastic deformation in a higher value of it. SDR is not affected by wheel mesh size when brittle fracture occured. But in the plastic deformation case, SDR value increases with wheel mesh size.

  • PDF

Development of Ultra-Micro Indentation Device using the PZT Actuator (압전구동기를 이용한 초미세 압입장치의 개발)

  • 박기태;박규열;홍동표
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.51-55
    • /
    • 1999
  • Recently, manufacturing work has been transformed to advanced technology intensive form from mass production with a little items required in the past. It was demanded that superior workpiece surface integrity. However, the study of ductile mode machining was proceeded actively.In this paper, it is developed Ultra-Micro Indentation Device using the PZT actuator. Experimentally, by using theUltra-Micro Indentation device, the micro fracture behavior of the silicon wafer was invesgated. It was possible that ductile-brittle transition point in ultimate surface of brittle material can be detected by adding an acoustic emission sensor system to the Ultra-Micro Indentation apparatus.

  • PDF

Dutile Regime Parallel Grinding of BK7 (BK7의 평행축 연성모드 연삭가공)

  • Lee, Hyeon-Sung;Kim, Min-Jae;Koo, Hal-Bon;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.85-89
    • /
    • 2012
  • Conventional grinding of BK7 glass will normally result in brittle fracture at the surface, generating severe sub-surface damage and poor surface finish. The precision grinding of BK7 glass in parallel grinding modes has been investigated. Grinding process, maximum chip thickness, ductile/brittle regime, surface roughness and sub-surface damage have been addressed. Special attention has been given to the condition for generating a ductile mode response on the ground surface. Experiments reveal that the level of surface roughness and depth of sub-surface damage vary differently for different condition. This study gives an indication of the strategy to follow to achieve high quality ground surfaces on brittle materials.

Out-of-plane ductile failure of notch: Evaluation of Equivalent Material Concept

  • Torabi, A.R.;Saboori, Behnam;Kamjoo, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.559-569
    • /
    • 2020
  • In the present study, the fracture toughness of U-shaped notches made of aluminum alloy Al7075-T6 under combined tension/out-of-plane shear loading conditions (mixed mode I/III) is studied by theoretical and experimental methods. In the experimental part, U-notched test samples are loaded using a previously developed fixture under mixed mode I/III loading and their load-carrying capacity (LCC) is measured. Then, due to the presence of considerable plasticity in the notch vicinity at crack initiation instance, using the Equivalent Material Concept (EMC) and with the help of the point stress (PS) and mean stress (MS) brittle failure criteria, the LCC of the tested samples is predicted theoretically. The EMC equates a ductile material with a virtual brittle material in order to avoid performing elastic-plastic analysis. Because of the very good match between the EMC-PS and EMC-MS combined criteria with the experimental results, the use of the combination of the criteria with EMC is recommended for designing U-notched aluminum plates in engineering structures. Meanwhile, because of nearly the same accuracy of the two criteria and the simplicity of the PS criterion relations, the use of EMC-PS failure model in design of notched Al7075-T6 components is superior to the EMC-MS criterion.

A Study of Thermal Shock Characteristics on the Joints of Automotive Application Component using Sn-3Ag-0.5Cu Solder (Sn-3Ag-0.5Cu계 솔더를 이용한 자동차 전장 부품 접합부의 열충격 특성에 관한 연구)

  • Jeon, Yu-Jae;Son, Sun-Ik;Kim, Do-Seok;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.611-616
    • /
    • 2010
  • This study investigated the characteristics of fracture behavior and mode on solder joints before and after thermal shock test for automotive application component using Sn-3.0Ag-0.5Cu solder, which has a outstanding property as lead-free solder. The shear strength was decreased with thermal cycle number, after 432 cycles of thermal shock test. In addition, fracture mode was verified to ductile, brittle fracture and base materials fracture such as different kind fractured mode using SEM and EDS. Before the thermal shock, the fractured mode was found to typical ductile fracture in solder layer. After thermal shock test, especially, Ag was found on fractured portion as roughest surface. Moreover, it occurred delamination between a PCB and a Cu land. Before thermal shock test, most of fractured mode in solder layer has dimples by ductile fracture. However, after thermal shock test, the fractured mode became a combination of ductile and brittle fracture, and it also could find that the fracture behavior varied including delamination between substrate and Cu land.