• Title/Summary/Keyword: Brittle behavior

Search Result 527, Processing Time 0.026 seconds

Crack Analysis of the Quasi-Brittle Materials Using a Stochastic Model (물성의 확륙적 분포를 이용한 Quasi-Brittle 재료의 균열해석)

  • 임윤목;김문겸;신승교;박진완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.217-222
    • /
    • 1999
  • Usually, the failure of quasi-brittle materials is numerically difficult to describe because of the localization process with softening behavior. In this study, ADLE(Axial Deformation Link Elements) with stochastic material properties are developed to simulate the quasi-brittle material failure behavior. The ADLE method is adopted both Fictitious Crack Model and stochastic method to implement the fracture behavior with the localization behavior of quasi-brittle materials. The main objective of this paper is to show the mash independency and the capability of ADLE for the failure behavior of a quasi-brittle materials.

  • PDF

Mixed-Mode Fracture Analysis of Quasi-Brittle Material Considering Fracture Energy (파괴에너지를 고려한 유사취성재료의 혼합모드 균열해석)

  • Lim, Yun-Mook;Kim, Moon-Kyum;Cho, Seok-Ho;Shin, Seung-Kyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.129-137
    • /
    • 2002
  • In this study, mixed-mode fracture behavior is simulated effectively through the numerical method using the axial defomation link elements which can predict the behavior of quasi-brittle material. The behavior of quasi-brittle material is modeled numerically using the exponential tension softening constitutive equation and verified by comparing with the result of published experimental result. In order to verify the mixed-mode fracture behavior through the developed numerical method, analysis of mode I is formulated and the result is compared with those of FEM first, and then mixed-mode analysis is analyzed and compared with existing theories and experimental data. Also the characteristics of fracture behavior is examined through the analysis of crack generation with respect to various mode mixity.

Ductile-to-Brittle Transition Behavior of Two Austenitic Fe-18Cr-10Mn Alloys with the Combined Addition of Nitrogen and Carbon (질소와 탄소가 복합 첨가된 두 오스테나이트계 Fe-18Cr-10Mn 합금의 연성-취성 천이 거동)

  • Lee, S.Y.;Kim, B.Y.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • The ductile-to-brittle transition behavior of two austenitic Fe-18Cr-10Mn alloys with the combined addition of nitrogen and carbon was investigated in this study. The alloys exhibited a ductile-to-brittle transition behavior because of unusual brittle fracture at low temperatures unlike conventional austenitic alloys. The alloy with higher carbon content had higher yield and tensile strengths than that with lower carbon content due to the solid solution strengthening effect resulting from carbon addition. However, the increase in carbon content promoted the occurrence of intergranular fracture, and thus deteriorated the impact toughness. In order to develop successfully the austenitic Fe-18Cr-10Mn alloys with the excellent combination of strength and toughness in the future, therefore, more systematic studies are required to find the appropriate amount and ratio of nitrogen and carbon.

Natural Element Analysis on Micro-cracking Behavior of Brittle Solids (취성 재료의 마이크로 크랙킹 거동에 관한 자연요소해석)

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.724-730
    • /
    • 2006
  • Fracture behavior of brittle solids is closely related to microcracking. A meso-scale analysis method using the natural element method is proposed for the analysis of brittle microcracking solids. The microcracking is assumed to occur along Voronoi edges in the Voronoi diagram generated using the nodal points as the generators. The mechanical effect of microcracks is considered by controlling the material constants in the neighborhood of the microcracks. The meso-analysis method is applied to the simulation of the microcracking behaviors of brittle solids subjected to tensile macrostress. The method is also applied to the analysis of the propagation of a macrocrack accompanied by the coalescence with microcracks formed near the macrocrack-tip.

A Study on the Fracture behavior in Silicon Wafer using the Ultra-Precision Micro Positioning System (초미세 위치결정시스템을 이용한 실리콘 웨이퍼의 파괴거동에 관한 연구)

  • 이병룡
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.38-44
    • /
    • 2000
  • The background of this study lies in he investigation of the formation mechanism of ductile mode(nkanometer-size) chips of brittle materials such as fine ceramics glass and silicon. As the first step to achieve this purpose this paper intends to observe the micro-deformation behavior of these materials in sub${\mu}{\textrm}{m}$ depth indentation tests using a diamond indentor. In this study it was developed Ultra-Micro Indentation. Device using the PZT actuator. Experimentally by using the Ultra-Micro Indentation device the micro fracture behavior of the silicon wafer was investigated. It was possible that ductile-brittle transition point in ultimate surface of brittle material can be detected by adding an acoustic emission sensor system to the Ultra-Micro Indentation appartus.

  • PDF

Influence of Cu and Ni on Ductile-Brittle Transition Behavior of Metastable Austenitic Fe-18Cr-10Mn-N Alloys (준안정 오스테나이트계 Fe-18Cr-10Mn-N 합금의 연성-취성 천이 거동에 미치는 Cu와 Ni의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.385-391
    • /
    • 2013
  • The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating low-temperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of ${\delta}$-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and ${\delta}$-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.

Effect of Grain Size on Ductile-Brittle Transition Behavior of Austenitic Fe-18Cr-10Mn-N-C Alloys (오스테나이트계 Fe-18Cr-10Mn-N-C 합금의 연성-취성 천이 거동에 미치는 결정립 크기의 영향)

  • Lee, Sang-In;Lee, Seung-Yong;Nam, Seung Hoon;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.559-565
    • /
    • 2015
  • The ductile-brittle transition behavior of two austenitic Fe-18Cr-10Mn-N-C alloys with different grain sizes was investigated in this study. The alloys exhibited a ductile-brittle transition behavior because of an unusual brittle fracture at low temperatures unlike conventional austenitic alloys. The alloy specimens with a smaller grain size had a higher yield and tensile strengths than those with a larger grain size due to grain refinement strengthening. However, a decrease in the grain size deteriorated the low-temperature toughness by increasing the ductile-brittle transition temperature because nitrogen or carbon could enhance the effectiveness of the grain boundaries to overcome the thermal energy. It could be explained by the temperature dependence of the yield stress based on low-temperature tensile tests. In order to improve both the strength and toughness of austenitic Fe-Cr-Mn-N-C alloys with different chemical compositions and grain sizes, more systematic studies are required to understand the effect of the grain size on the mechanical properties in relation to the temperature sensitivity of yield and fracture stresses.

Effects of Ni-P Bath on the Brittle Fracture of Sn-Ag-Cu Solder/ENEPIG Solder Joint (ENEPIG/Sn-Ag-Cu 솔더 접합부의 취성 파괴에 미치는 무전해 니켈 도금액의 영향)

  • Kim, Kyoung-Ho;Seo, Wonil;Kwon, Sang-Hyun;Kim, Jun-Ki;Yoon, Jeong-Won;Yoo, Sehoon
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • The effect of metal turnover (MTO) of electroless Ni plating bath on the brittle fracture behavior of electroless nickel electroless palladium immersion gold (ENEPIG)/Sn-3.0wt%Ag-0.5wt%Cu(SAC305) solder joint was evaluated in this study. The MTOs of the electroless Ni for the ENEPIG surface finish were 0 and 3. As the MTO increased, the interfacial IMC thickness increased. The brittle fracture behavior of the ENEPIG/SAC305 solder joint was evaluated with high speed shear (HSS) test. The HSS strength decreased with increasing the MTO of the electroless Ni bath. The brittle fracture increased with increasing the shear speed of the HSS test. The percentage of the brittle fracture for the 3 MTO sample was much higher than that for the 0 MTO sample.

The Application of the Medified Distinct Element Method to Wave Propagation in Structures with Discontinuous Faces (수정개별요소법에 의한 불연속 구조체의 파전달 거동 해석)

  • 김문겸;오금호;김우진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.232-239
    • /
    • 1997
  • The phenomenology of shock loading effects in brittle mass has been of interest to researchers and engineers. The shock loading as blasting causes strong stress waves in the structures. Discontinuous faces due to shock waves interrupt the tensile stress wave propagation and reflect the stress wave propagation. To predict the fracturing behavior of brittle mass, it is required for the numerical method that can analyze the colliding and slipping behavior of discontinuous faces and the wave propagation in the mass, simultaneously In this study, the wave propagation in the brittle materials is analyzed using the modified distinct element method to be able to predict the behavior of discontinuous structures. The behavior of an unsupported bar subjected to loading at the end is analyzed to verify the rigid body motion of a bar and the relative displacement in the bar. The colliding behavior of two bars is analyzed to investigate the propagation of stress waves in the bar. The fracturing behavior of a bar due to impact loading is analyzed to investigate the propagation of stress waves in the bar with and without the discontinuous faces. The applicability of the modified distinct element method to the wave propagation problems is investigated.

  • PDF

Effect of Interstitial Elements on Ductile-Brittle Transition Behavior of Austenitic Fe-18Cr-10Mn-2Ni Alloys (오스테나이트계 Fe-18Cr-10Mn-2Ni 합금의 연성-취성 천이 거동에 미치는 침입형 원소의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.649-654
    • /
    • 2013
  • The effect of interstitial elements on the ductile-brittle transition behavior of austenitic Fe-18Cr-10Mn-2Ni alloys with different nitrogen and carbon contents was investigated in this study. All the alloys exhibited ductile-brittle transition behavior because of unusual low-temperature brittle fracture, even though they have a faced-centered cubic structure. With the same interstitial content, the combined addition of nitrogen and carbon, compared to the sole addition of nitrogen, improved the low-temperature toughness and thus decreased the ductile-brittle transition temperature (DBTT) because this combined addition effectively enhances the metallic component of the interatomic bonds and is accompanied by good plasticity and toughness due to the increased free electron concentration. The increase in carbon content or of the carbon-to-nitrogen ratio, however, could increase the DBTT since either of these causes the occurrence of intergranular fracture that lead to the deterioration of the toughness at low temperatures. The secondary ion mass spectroscopy analysis results for the observation of carbon and nitrogen distributions confirms that the carbon and nitrogen atoms were significantly segregated to the austenite grain boundaries and then caused grain boundary embrittlement. In order to successfully develop austenitic Fe-Cr-Mn alloys for low-temperature application, therefore, more systematic study is required to determine the optimum content and ratio of carbon and nitrogen in terms of free electron concentration and grain boundary embrittlement.