• Title/Summary/Keyword: Brittle

Search Result 1,770, Processing Time 0.023 seconds

A Study on Mirror-like Polishing of Brittle Material by Elastic Emission Machining (탄성방출가공법에 의한 경취재료의 경면 폴리싱에 관한 연구)

  • 남성호;김정두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1009-1014
    • /
    • 1997
  • The small material removal rate of elastic emission machinong (EEM) becomes a serious problem due to using fine powder particles for obtaining finished of high quality. If a cylindrical polyurethane-wheel is used as a tool for accelerating powder particles, the efficiency of machining may be increased through enlarging the machining regionand increasing the surface velocity of the wheel. If these analyicl results are compared with experimental ones, characteristics of EEM using polyurethan-wheel can be clarified. In this study, effects of EEM using cylindrical polyurethane-wheel on the surface roughness and the material removal rate were verified through polishing of the brittle material under various conditions. The high-efficient polishing of silicon wafer has been also carried out using this method.

  • PDF

Local Softening of Hot-stamped Parts using a Laser Heat Treatment (레이저 열처리를 이용한 핫스탬핑 부품의 국부 연화 기술 연구)

  • Kim, K.B.;Jung, Y.I.;Kim, T.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.354-360
    • /
    • 2015
  • AHSS (Advanced High Strength Steels) has been increasingly employed by global automotive OEMs in order to satisfy strengthened regulations and reduce weight for fuel efficiency. Hot stamping using boron steels in AHSS increases not only formability but also strength. The typical hot-stamped automotive part is the center pillar that is critical for vehicle side impact. However, the hot-stamped part can be risky for the passenger safety caused by brittle fracture under a vehicle collision. The high power diode laser is suitable for the heat treatment giving AHSS increased elongation that prevents brittle fracture in car crash. Therefore, local softening by laser heat treatment for energy absorption area on the hot-stamped part improves crash-worthiness.

What is the Faults? (단층이란 무엇인가?)

  • Lee, Byung-Joo;Cheong, Jang-Yeong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.127-137
    • /
    • 2007
  • Faults are fractures along which there is visible offset by shear displacement parallel to the fracture surface. Faults can occur as single discrete breaks, but where the rock has been repeatedly faulted, or where the rock is especially weak, no discrete break may be evident. What forms instead is a fault zone composed of countless subparallel and interconnecting closely spaced fault surfaces. Faulting is fundamentally a brittle mechanism for achieving shear displacement. At deep crustal levels where rocks tend to deform plastically under conditions of elevated temperature and confining pressure, shear displacement is achieved by and development of shear zones. In this paper authors propose the fault grade in Korea.

  • PDF

An Experimental Study on the Hysteretic Capacity Evaluation of the Shear-Strengthened RC Column with Carbon Fiber Sheet (탄소섬유쉬트로 전단보강한 RC 기둥의 이력성능평가에 관한 실험적 연구)

  • 이현호;구은숙
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.750-755
    • /
    • 1999
  • When the RC frame structures subjected to the seismic load, brittle shear failure of vertical members induces brittle collapse of whole structures. Failure mechanism like this is not desirable. So shear strengthening method to avoid this failure mechanism is needed. Recently, strengthening method using continuous fiber sheet is studied and used widely which have high elastic and high strength characteristics. In this study, RC columns which is strengthened by carbon fiber sheet in the form of tape or whole sheet were tested under the cyclic load. The parameter of this test is the amount of strengthening. As the amount of strengthening increase, strength, ductility and energy capacity increase. The failure mode of test results are shear and bond-split failure.

  • PDF

Considerations in the Safety Evaluation of the Lateral Structural Members Reinforced with Steel Plate or CFRP Sheet (강판 또는 탄소섬유시트 보강된 수평 구조 부재의 안전성 평가시 고려사항)

  • 강석원;박형철;오보환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.331-334
    • /
    • 2003
  • Since regulation or specification for the reinforcing method are quite ambiguous, structural design for the reinforcement can be subjectively and arbitrarily conducted. Thus, reasonable limitation and guide for the quantity of the reinforcement are required for the safe use of the structure after repair. In order to guarantee the safety of the structural member several items should be considered; reinforcing limit to avoid the brittle failure, least required strength of the existing member before reinforcement in order not to fail under the new serviceability load condition when reinforcing steel plates or CFRP sheets are harmed or subjected to fire.

  • PDF

Circumferential Confinement Effect on Lap-Spliced Reinforcements of Circular Bridge Pier (횡방향 구속이 교각의 겹침이음에 미치는 영향에 대한 고찰)

  • 최영민;황윤국;권태규;박경훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.339-342
    • /
    • 2003
  • The bridge columns with lap-splice reinforcements in earthquake suffered a brittle bond-slip failure due to deterioration of the lap-spliced longitudinal reinforcements without developing its flexural capacity or ductility. In this case, such a brittle failure can be controlled by the seismic retrofit using FRP wrapping. The retrofitted columns using FRP wrapping showed significant improvement in seismic performance due to FRP's confinement effect. This paper presents the circumferential confinement effect of existing circular bridge pier strengthened with FRP wrapping for poor lap-splice details. The effects on the confinement of FRP wrapping, such as gap lengths between footing and FRP, fiber orientations, and thicknesses of FRP, were investigated by quasi-static experiments.

  • PDF

A Study on Preventing Cracks at the Small Hole Exit in Ultrasonic Machining Using a Wax Coating (초음파 미세구멍 관통가공에서 왁스 코팅을 이용한 출구크랙 방지에 관한 연구)

  • Li, Hang;Ko, Tae Jo;Baek, Dae Kyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.105-111
    • /
    • 2015
  • Ultrasonic machining (USM) does not involve heating or any electrochemical effects, and subsequently causes low surface damage, has small residual stress, and does not rely on the conductivity of the workpiece. These characteristics are suitable for the machining of brittle materials, such as glass or ceramics. However, USM for brittle materials generates cracks on the workpiece while machining, especially at the hole exit with a small diameter. In this study, wax coating was used to deposit wax on the back side of the workpiece to decrease the occurrence of cracks at the exit holes in USM, and it was finally removed with a cleaning process. The experimental results show that this technique is beneficial for restricting the occurrence of cracks in glass or ceramics.

Analysis of Cutting Parameters for $Si_3 N_4$-hBN Machinable Ceramics Using Tungsten Carbide Tool (초경공구를 사용한 $Si_3 N_4$-hBN 머시너블 세라믹 가공에서 절삭 파라미터 분석과 결정)

  • 장성민;조명우;조원승;박동삼
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.36-43
    • /
    • 2003
  • In machining of ceramic materials, they are very difficult-to cut materials because of there high strength and hardness. Machining of ceramics are characterized by cracking and brittle fracture. Generally, ceramics are machined using conventional method such as finding and polishing. However these processes are generally costly and have low MRR(material removal rate). This paper focuses on determining the optimal levels of process parameters for products with CNC machining center. For this purpose, the optimization of cutting parameters is performed based on experimental design method. A design and analysis of experiments is conducted to study the effects of these parameters on the surface roughness by using the S/N ratio, analysis of ANOVA and F-test. Cutting parameters, namely, cutting speed, feed and depth of cut are optimized with consideration of the surface roughness.

The Mechanics of Crack Formation Induced by Sliding on a Brittle Material (슬라이딩에 의해 취성재료에 발생하는 균열 성장에 관한 연구)

  • Kim, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.36-44
    • /
    • 1995
  • When sliding a hard cylinder along the surface of glass, periodic surface cracks appear on the flat surface due to tensile stresses induced by the slider. These cracks propagate into the substrate and will affect the fracture properties of a body. Crack spacings and the directions of crack propagation into glass were calculated numerically by applying the finite element method and linear elastic fracture mechanics. The calculated crack spacings were in the range of the experimental results. Stress intensity factors and crack extension angles depended on the radius of slider and the load, and from these two factors the possible directions of crack propagation were calculated. The calculated propagation directions were in good agreement with real crack propagation.

  • PDF

Natural Element Analysis on Macro Elastic Moduli for Materials with Micro-cracks (마이크로 크랙을 포함한 재료의 매크로 탄성 정수에 관한 자연요소해석)

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.716-723
    • /
    • 2006
  • A meso-scale analysis method using the natural element method is proposed for the analysis of material damage of brittle microcracking solids. The microcracking is assumed to occur along Voronoi edges in the Voronoi diagram generated using the nodal points as the generators. The mechanical effect of microcracks is considered by controlling the material constants in the neighborhood of the micorcracks. The macro elastic moduli of isotropic solids containing a number of randomly distributed microcracks are calculated considering the effect of microcrack closure to demonstrate the validity of the proposed method.