• Title/Summary/Keyword: Brine-washing

Search Result 8, Processing Time 0.021 seconds

Effect of Air Bubble Washing with Brine on Quality Characteristics of Strawberries during Storage (염수를 이용한 공기방울 세척이 딸기의 저장 시 품질특성에 미치는 영향)

  • Kang, Sung-Won;Lee, Byung-Ho;Heo, Ho-Jin;Chun, Ji-Yeon;Seoung, Tae-Jong;Choi, Sung-Gil
    • Journal of agriculture & life science
    • /
    • v.45 no.3
    • /
    • pp.81-88
    • /
    • 2011
  • In this study, we investigated effect of washing with brine on quality characteristics of strawberries during storage at 4 or $20^{\circ}C$. The strawberry samples were prepared with brine-washing (BW), brine-washing and removing moisture on surface (BWR), or without brine-washing and removing moisture (control). The samples were tested for total aerobic bacteria, pH, color, firmness. BWR affected the microbial change, resulting in retarding the growth of total aerobic bacteria, compared with the control and BW. The initial microbial and exponential growth phase of BWR at $4^{\circ}C$ was not detected. For pH, there wasn't dramatical change on BWR at $4^{\circ}C$ and $20^{\circ}C$. In addition, there was dramatically in decreased on control and BW. A-value was increased over storage time on control and BWR except BW. For firmness, there wasn't dramatical change on all sample when stored at $4^{\circ}C$. The results suggest that storage of strawberry stored after washing and moisture removal from the surface should be applied to maintain quality and shelf-life during storage of strawberries.

Monitoring of Microbial Contaminants in Processing Line of Some Mushromm Canneries (양송이 통조림 공장의 미생물 오염도 변화 추적)

  • 신동화;홍재식
    • Journal of Food Hygiene and Safety
    • /
    • v.4 no.2
    • /
    • pp.103-108
    • /
    • 1989
  • Three mushroom cannerries were selected by size which are representative vegetable processing firms in korea for monitoring microbial contamination of processing water, washing water, mushroom before and after washing through first and second washing tanks and, blanched and prolonged mushroom for certain time at room temperature. Total contamination degree was expressed as colony forming unit (CFU) of mesophilic aerobes. The contamination degree of processing water was $10^{2}\;CFU/100\;ml$ and washing water in first and second washing tank were 10 to 100 times higher than processing water. When 2.3 tons of washing water was used for washing 1 ton of mushroom, washing effect was showed by reduction of microbial load but cutting it to 1.8 tonsIl ton of mushroom, microbial load was higher than that of raw mushroom level. Blanching reduced microbial load to 50-500 CFU/g of blanched mushroom and it was not seen much increase of CFU in blanched mushroom left at room temperature for 3 hours in $16^{\circ}C$ processing water. Just after injection of $80^{\circ}C$ brine in container, CFU/ml of brine in container was $84{\times}10^{4}$ but it was increased rapidly to $20{\times}10^{7}$ after 2 hours at ambient temperature.

  • PDF

Characterization of Chinese Cabbage during Soaking in Sodium Chloride Solution (통배추의 염절임 방법에 따른 특성변화)

  • Han, Kee-Young;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.707-713
    • /
    • 1996
  • Changes of sodium chloride content in Chinese cabbage were investigated at different conditions. The diffusion rate of sodium chloride into the cabbage increased with increasing the temperature of brine solution. Sodium chloride content of Chinese cabbage at the lower portion of tank was higher than that at the upper position. The more washing and dewatering, the lower sodium chloride content of the cabbage was found. Microstructure pattern of salted cabbage tissue depended upon height of tank. The changed epidermis cell was recovered after several times of washing.

  • PDF

Multi- effect air gap membrane distillation process for pesticide wastewater treatment

  • Pangarkar, Bhausaheb L.;Deshmukh, Samir K.;Thorat, Prashant V.
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.529-541
    • /
    • 2017
  • A multi-effect air gap membrane distillation (ME-AGMD) module for pesticide wastewater treatment is studied with internal heat recovery, sensible heat of brine recovery, number of stages and the use of fresh feed as cooling water in a single module is implemented in this study. A flat sheet polytetrafluroethylene (PTFE) membrane was used in the 4-stage ME-AGMD module. The maximum value of permeate flux could reach $38.62L/m^2h$ at feed -coolant water temperature difference about $52^{\circ}C$. The performance parameter of the module like, specific energy consumption and gain output ratio (GOR) was investigated for the module with and without heat recovery. Also, the module performance was characterized with respect to the separation efficiency of several important water quality parameters. The removal efficiency of the module was found to be >98.8% irrespective water quality parameters. During the experiment the membrane fouling was caused due to the deposition of the salt/crystal on the membrane surface. The membrane fouling was controlled by membrane module washing cycle 9 h and also by acidification of the feed water (pH=4) using 0.1M HCl solution.

Effect of Electrolyzed Acid-Water on Initial Control of Microorganisms in Kimchi (전해산화수를 이용한 김치의 초기 미생물 제어 효과)

  • 정승원;박기재;김영호;박병인;정진웅
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.5
    • /
    • pp.761-767
    • /
    • 1996
  • To lessen the initial level of microorganisms, electrolyzed acid-water was used as washing and brine water in the manufacturing process. On the washing and salting processes, application of electrolyzed acid-water showed a possibility to lessen the microorganism level of Chinese cabbage effectively. Microbial level of Chinese cabbage was reduced to about 1/4 level by salting and washing process with electrolyzed acid-water while Chinese cabbage salted with tap water increased to about 1.7 times. And no coliform and E. coli were detected. However significant differences between seasoning mixtures prepared with electrolyzed acid-water and with tap water were not observed in microbial levels. Relatively low level of total count in kimchi prepared with electroyzed acid-water was kept until 15 days of fermentation at $10^{\circ}C.$ Any significant difference between them was not observed after 20 days of fermentation. pH and acidity were showed the same tendencies as microbial count.

  • PDF

The distribution and antimicrobial susceptibility of pathogenic microorganisms isolated from chicken slaughtering and processing procedure (닭 도계 및 가공공정 중 유해미생물의 분포와 항생제 감수성)

  • Seol, Kuk-Hwan;Kim, Ki Hyun;Jo, Su-Mi;Kim, Young Hwa;Kim, Hyun-Wook;Ham, Jun-Sang
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • This study was performed to analyze the distribution and antimicrobial resistance of pathogenic microorganisms isolated from the carcass and environments of chicken processing plant located in Gyeonggi province from October to November in 2010. Chicken slaughterhouse was visited 3 times and totally 40 samples were collected from chicken carcass before and after washing (n=14), chicken cuts (n=7), cooling water (n=8), brine (n=2), cutting knives (n=7) and working plate (n=2). Whole-chicken rinsing technique (for chicken carcasses) and swab technique (for working plate and knives) were used to analyze the distribution of pathogenic microorganisms. In addition, brine and chilling water from storage tanks were gathered using sterilized tubes and used as samples. The matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for whole cell fingerprinting in combination with a dedicated bioinformatic software tool was used to identify the isolated microorganisms. The pathogenic microorganisms, such as Bacillus cereus (n=8) and Staphylococcus aureus (n=9), were isolated form the chicken processing process (chicken carcasses of before and after chilling, chicken cuts, and working plate). The antimicrobial susceptibility of those isolated microorganisms was analyzed using 21 antimicrobial agents. In the case of B. cereus, it showed 100% of resistance to subclasses of penicillins and peptides, and it also resistant to cephalothin, a member of critically important antimicrobials (CIA), however there was no resistance (100% susceptible) to vancomycin and chloramphenicol. S. aureus showed 100% resistance to subclasses of peptides and some of penicillins (penicillin and oxacillin), however, it showed 100% susceptibility to cephalosporins (cefazolin and cephalothin). All of the tested pathogens showed multi drug resistance (MDR) more than 4 subclasses and one of B. cereus and S. aureus showed resistance to 9 subclasses. After the ban on using the antimicrobials in animal feed in July 2011, there would be some change in microbial distribution and antimicrobial resistance, and it still has a need to be analyzed.

Combined Effects of Sanitizer Mixture and Antimicrobial Ice for Improving Microbial Quality of Salted Chinese Cabbage during Low Temperature Storage (저온 저장 중 절임배추의 미생물학적 품질 향상을 위한 혼합 살균제재와 항균성 얼음 병합처리 효과)

  • Choi, Eun Ji;Chung, Young Bae;Han, Ae Ri;Chun, Ho Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1715-1724
    • /
    • 2015
  • The combined effects of a sanitizer mixture solution and antimicrobial ice on the quality of salted Chinese cabbages were examined. Salted Chinese cabbages were treated with a sanitizer mixture (comprised 50 ppm aqueous $ClO_2$ and 0.5% citric acid), packed in 2% brine and antimicrobial ice, and stored for 12 days at 4 and $10^{\circ}C$. Microbiological data on the salted Chinese cabbages after washing with the sanitizer mixture indicated that the populations of total aerobic bacteria, and yeast and molds decreased by 2.20 and 1.28 log CFU/g after treatment with the sanitizer mixture. In addition, coliforms population of salted Chinese cabbage after 12 days storage at $4^{\circ}C$ in the combined mixture of the sanitizer and antimicrobial ice was 3.22 log CFU/g, which was a significantly different from that of control (5.46 log CFU/g). The combined treatment of sanitizer mixture, antimicrobial ice, and low temperature at $4^{\circ}C$ suppressed reduction of pH and elevation of titratable acidity, resulting in delaying the growth of lactic acid bacteria. Differences in salinity, hardness, and Hunter's $L^*$, $a^*$, and $b^*$ values among treatments were negligible during storage at $4^{\circ}C$. Therefore, this study suggests that a combination of sanitizer mixture, antimicrobial ice treatment, and low temperature storage could improve the microbial safety and quality of salted Chinese cabbages during storage.

Initial Control of Microorganism in Kimchi by the Modified Preparation Method of Seasoning Mixture and the Pretreatment of Electrolyzed Acid-Water (전해산화수 전처리 및 양념류 제조방법에 따른 김치의 초기 미생물 제어)

  • Park, Kee-Jai;Jung, Sung-Won;Park, Byoung-In;Kim, Young-Ho;Jeong, Jin-Woong
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1104-1110
    • /
    • 1996
  • To lessen the initial level of microorganism in kimchi, the preparation method of seasoning mixture was modified and electrolyzed acid-water was substitute for washing water and brine water. Changes in the microbial counts of the red pepper powder-garlic mixture prepared with red pepper powder, garlic and 4.8% (w/w) water (tap water and electrolyzed acid-water) of manufactured kimchi showed that coliform count and E. coli count were reduced to 93% and 98%, of the initial level in the tap water added red pepper powder-garlic mixture and 97% and 99% in the electrolzed acid-water added mixture after 6 hours of mix. After 24 hours of mix, no E. coli was recovered in borth mixtures. Microbial levels were revealed as $2.4{\times}10^5\;CFU/g$ for total count, $2.3{\times}10^5\;CFU/g$ for Lactobacillus count. $1.0{\times}10^2{\;}CFU/g$ of coliform count and $10^1\;CFU/g$ of E. coli count in the seasoning mixture prepared by the general method, and $4.2{\times}10^5\;CFU/g$ of total count, $4.0{\times}10^5CFU/g$ of Lactobacillus count, $1.0{\times}10^3\;CFU/g$ of coliorm count and $4.0{\times}10^2\;CFU/g$ of E. coli count in the mixture propared by the modified method. During fermentation at $10^{\circ}C$, the levels of total and Lactobacillus counts in kimchi prepared by the modified method were significantly lower than those of kimchi were recovered in kimchi prepared by the modified method, whereas there were at the level of $10^1\;CFU/g$ in kimchi prepared by the general method. The pH and acidity of kimchi prepared by the modified method were 4.66 and 0.54%, respectively, whereas those in kimchi prepared b the general method were 4.51 and 0.70%, respectively. But after 14 days of fermentation significant differences were not observed in the changes of microbial, pH and acidity for both kimchi.

  • PDF