• Title/Summary/Keyword: Brillouin Chaotic Effect

Search Result 4, Processing Time 0.015 seconds

Chaotic and Instability Effects in Brillouin-Active Fiber-Ring Sensor (광섬유링센서에서 유도되는 브루앤파의 혼돈 및 비안정화 현상)

  • Kim, Yong K.;Kim, Jin-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.337-341
    • /
    • 2004
  • In this paper the effect of chaos induced instability in Brillouin-active fiber-ring sensor is described. The inherent optical feedback by the backscattered Stokes wave in optical fiber leads to instabilities in the form of optical chaos. The paradigm of optical chaos in fiber serves as a test for fundamental study of chaos and its suppression and exploitation in practical application in communication and sensing. At weak power, the nature of the Brillouin instability can occur at before threshold. At strong power, the temporal evolution above threshold is periodic and at higher intensity can become chaotic. The threshold for the Brillouin instability in fiber-ring sensor is much lower than the threshold of the normal Brillouin instability process.

Effect of Chaos and Instability of Brillouin-Active Fiber Based on Optical Communication Networks

  • Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.272-277
    • /
    • 2013
  • In this paper the effect of instability and chaos in optical fiber networks based on the Internet is described. Nonlinear optical fiber effect especially Brillouin scattering in networks has emerged as the essential means for the construction of active optical devices used for all-optic in-line switching, channel selection, amplification, oscillation in optical communications and a host of other applications. The inherent optical feedback by the back-scattered Stokes wave in optical networks also leads to instabilities in the form of optical chaos. This paradigm of optical chaos in fiber Internet serves as a test for fundamental study of chaos and its suppression and exploitation in practical application in optical fiber communication. This paper attempts to present a survey and some of our research findings on the nature of Brillouin chaotic effect on Internet based optical communication.

Effect of Chaos and Instability of Brillouin-Active Fiber Based on Optical Communication

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Kim, Ji-Hyoung;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 2008
  • In this paper the effect of instability and chaos in optical fiber networks based on the Internet is described. Nonlinear optical fiber effect especially Brillouin scattering in networks has emerged as the essential means for the construction of active optical devices used for all-optic in-line switching, channel selection, amplification, oscillation in optical communications and a host of other applications. The inherent optical feedback by the back-scattered Stokes wave in optical networks also leads to instabilities in the form of optical chaos. This paradigm of optical chaos in fiber Internet serves as a test for fundamental study of chaos and its suppression and exploitation in practical application in optical fiber communication. This paper attempts to present a survey and some of our research findings on the nature of Brillouin chaotic effect on Internet based optical communication.

  • PDF

Effect of Steady and Relaxation Oscillation in Brillouin-Active Fiber Ring Structural Sensors (유도 브릴루앙-파이버 링센서에서 비안정화 현상)

  • Kim, Yong-Kab;Lee, Byeong-Ha;Paek, Un-Chul
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.208-209
    • /
    • 2003
  • We have developed a practical Brillouin active fiber ring sensor of length less than 20m, by employing an optical amplifier to compensate for most of the connection losses in the ring. The loss reduction brings the standard Brillouin threshold from 21 down to 0-0.1 through the enhancement of the finesse of the ring. However, in the course of our experiments, some level of temporal instability and chaotic behavior in the backscattered Stokes intensity and also in its spectral line shift were consistently observed. (omitted)

  • PDF