• Title/Summary/Keyword: Brightness temperature difference

Search Result 84, Processing Time 0.019 seconds

Detection of Sea Fog by Combining MTSAT Infrared and AMSR Microwave Measurements around the Korean peninsula (MTSAT 적외채널과 AMSR 마이크로웨이브채널의 결합을 이용한 한반도 주변의 해무 탐지)

  • Park, Hyungmin;Kim, Jae Hwan
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.163-174
    • /
    • 2012
  • Brightness temperature (BT) difference between sea fog and sea surface is small, because the top height of fog is low. Therefore, it is very difficult to detect sea fog with infrared (IR) channels in the nighttime. To overcome this difficulty, we have developed a new algorithm for detection of sea fog that consists in three tests. Firstly, both stratus and sea fog were discriminated from the other clouds by using the difference between BTs $3.7{\mu}m$ and $11{\mu}m$. Secondly, stratus occurring at a level higher than sea fog was removed when the difference between cloud top temperature and sea surface temperature (SST) is smaller than 3 K. In this process, we used daily SST data from AMSR-E microwave measurements that is available even in the presence of cloud. Then, the SST was converted to $11{\mu}m$ BT based on the regressed relationship between AMSR-E SST and MTSAT-1R $11{\mu}m$ BT at 1733 UTC over clear sky regions. Finally, stratus was further removed by using the homogeneity test based on the difference in cloud top texture between sea fog and stratus. Comparison between the retrievals from our algorithm and that from Korea Meteorological Administration (KMA) algorithm, shows that the KMA algorithm often misconceived sea fog as stratus, resulting in underestimating the occurrence of sea fog. Monthly distribution of sea fog over northeast Asia in 2008 was derived from the proposed algorithm. The frequency of sea fog is lowest in winter, and highest in summer especially in June. The seasonality of the sea fog occurrence between East and West Sea was comparable, while it is not clearly identified over South Sea. These results would serve to prevent the possible occurrence of marine accidents associated with sea fog.

Measurement of Soot and Temperature on Bio Diesel Flame by Two-Color Method (이색법에 의한 바이오 디젤화염의 그을음과 온도 측정)

  • Kim, M.S.;Kang, H.Y.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.5-11
    • /
    • 2012
  • There were some papers for diesel engine performance tests using BDF, but few article deals with the temperature and soot concentration of Bio diesel flame. Since the flame temperature of diesel engines is so high and change rapidly, an optical method for measurement of flame temperature is known as the most effective one. The two-color method regarding the visible wavelength radiation for the soot particles in flame was applied on Bio diesel flame in order to measure flame temperature and soot concentration in a diesel engine. Photo detecting device was newly designed and employed TSL250R, photo-diode, to pick-up the light information emitted from the combustion flame. As a result, real flame temperature T, as a flame brightness temperature, through Ta1, Ta2, were obtained and finally the characteristics of KL value as a soot concentration reveal the difference of combustion information between diesel fuel, blending oil and Bio diesel fuel oil.

Improvement and Validation of Convective Rainfall Rate Retrieved from Visible and Infrared Image Bands of the COMS Satellite (COMS 위성의 가시 및 적외 영상 채널로부터 복원된 대류운의 강우강도 향상과 검증)

  • Moon, Yun Seob;Lee, Kangyeol
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.420-433
    • /
    • 2016
  • The purpose of this study is to improve the calibration matrixes of 2-D and 3-D convective rainfall rates (CRR) using the brightness temperature of the infrared $10.8{\mu}m$ channel (IR), the difference of brightness temperatures between infrared $10.8{\mu}m$ and vapor $6.7{\mu}m$ channels (IR-WV), and the normalized reflectance of the visible channel (VIS) from the COMS satellite and rainfall rate from the weather radar for the period of 75 rainy days from April 22, 2011 to October 22, 2011 in Korea. Especially, the rainfall rate data of the weather radar are used to validate the new 2-D and 3-DCRR calibration matrixes suitable for the Korean peninsula for the period of 24 rainy days in 2011. The 2D and 3D calibration matrixes provide the basic and maximum CRR values ($mm\;h^{-1}$) by multiplying the rain probability matrix, which is calculated by using the number of rainy and no-rainy pixels with associated 2-D (IR, IR-WV) and 3-D (IR, IR-WV, VIS) matrixes, by the mean and maximum rainfall rate matrixes, respectively, which is calculated by dividing the accumulated rainfall rate by the number of rainy pixels and by the product of the maximum rain rate for the calibration period by the number of rain occurrences. Finally, new 2-D and 3-D CRR calibration matrixes are obtained experimentally from the regression analysis of both basic and maximum rainfall rate matrixes. As a result, an area of rainfall rate more than 10 mm/h is magnified in the new ones as well as CRR is shown in lower class ranges in matrixes between IR brightness temperature and IR-WV brightness temperature difference than the existing ones. Accuracy and categorical statistics are computed for the data of CRR events occurred during the given period. The mean error (ME), mean absolute error (MAE), and root mean squire error (RMSE) in new 2-D and 3-D CRR calibrations led to smaller than in the existing ones, where false alarm ratio had decreased, probability of detection had increased a bit, and critical success index scores had improved. To take into account the strong rainfall rate in the weather events such as thunderstorms and typhoon, a moisture correction factor is corrected. This factor is defined as the product of the total precipitable waterby the relative humidity (PW RH), a mean value between surface and 500 hPa level, obtained from a numerical model or the COMS retrieval data. In this study, when the IR cloud top brightness temperature is lower than 210 K and the relative humidity is greater than 40%, the moisture correction factor is empirically scaled from 1.0 to 2.0 basing on PW RH values. Consequently, in applying to this factor in new 2D and 2D CRR calibrations, the ME, MAE, and RMSE are smaller than the new ones.

FOG DETECTION OVER THE KOREAN PENINSULA DERIVED FROM SATELLITE OBSERVATIONS OF POLAR-ORBIT (MODIS) AND GEOSTATIONARY (GOES-9)

  • Yoo, Jung-Moon;Jeong, Myeong-Jae;Yoo, Hye-Lim;Rhee, Ju-Eun;Hur, Young-Min;Ahn, Myoung-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.664-667
    • /
    • 2006
  • Seasonal threshold values for fog detection over the ten airport areas in the Korean Peninsula have been derived, using the satellite-observed data of polar-orbit (Aqua/Terra MODIS) and geostationary (GOES-9) during two years. The values are obtained from reflectance at 0.65 ${\mu}m$ $(R_{0.65})$ and the difference in brightness temperature between 3.7 ${\mu}m$ and 11 ${\mu}m$ $(T_{3.7-11})$. In order to examine the discrepancy between the threshold values of two kinds of satellites, the following parameters have been analyzed under the condition of daytime/nighttime and fog/clear-sky, utilizing their simultaneous observations over the Seoul Metropolitan Area. The parameters are the brightness temperature at 3.7 ${\mu}m$ $(T_{3.7})$, the temperature at 11 ${\mu}m$ $(T_{11})$, and $T_{3.7-11}$ for day and night. The $R_{0.65}$ data are additionally included in the daytime. The GOES-9 thresholds over the nine airport areas except the Cheongju airport have revealed the accuracy of 60% in the daytime and 70% in the nighttime, based on statistical verification as follows; FAR, POD and CSI. However, the accuracy decreases in the foggy cases with twilight, precipitation, short persistence, or the higher cloud above fog.

  • PDF

Fog Sensing over the Korean Peninsula Derived from Satellite Observation of MODIS and GOES-9

  • Yoo, Jung-Moon;Jeong, Myeong-Jae;Yoo, Hye-Lim;Rhee, Ju-Eun;Hur, Young-Min;Ahn, Myoung-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.373-377
    • /
    • 2006
  • Seasonal threshold values for fog detection over the ten airport areas in the Korean Peninsula have been derived, using the satellite-observed data of polar-orbit (Aqua/Terra MODIS) and geostationary (GOES-9) during two years. The values are obtained from reflectance at $0.65{\mu}m\;(R_{0.65})$ and the difference in brightness temperature between $3.7{\mu}m\;and\;11{\mu}m\;(T_{3.7-11})$. In order to examine the discrepancy between the threshold values of two kinds of satellites, the following parameters have been analyzed under the condition of daytime/nighttime and fog/clear-sky, utilizing their simultaneous observations over the Seoul Metropolitan Area. The parameters are the brightness temperature at $3.7{\mu}m\;(T_{3.7})$, the temperature at $11{\mu}m\;(T_{11}$, and $T_{3.7-11}$ for day and night. The $R_{0.65}$ data are additionally included in the daytime. The GOES-9 thresholds over the seven airport areas except the Cheongju airport have revealed the accuracy of 50% in the daytime and 70% in the nighttime, based on statistical verification for the independent samples as follows; FAR, POD and CSI. However, the accuracy decreases in the foggy cases with twilight, precipitation, short persistence, or the higher cloud above fog.

An Experimental Study to Determine Proper Lighting Conditions in Powder Rooms

  • Kim, Hyun-Ji;Lim, Jang-Hyeon;Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.54-62
    • /
    • 2013
  • In this study, a mock powder room was installed with variable LED lighting environments in order to conduct the experiments. The experimental conditions include luminaire type, illuminance ratio, vertical illuminance and color temperatures. The evaluation methods used were the Semantic Differential Method and a subjective evaluation on activities through observation. The SD evaluation result factor analysis categorizes ideas into three factors: brightness, emotion, and glare. The vertical bracket or the combined luminaire (luminous panel+ Vertical bracket) has better brightness than luminous panel. A vertical illuminance of 500lx is not significantly difference as compared to 600lx, allowing 500lx to be considered standard. The emotional atmosphere is evaluated as being better at lower color temperature. The luminous panel is the best for reducing glare while the vertical bracket is the worst. The best conditions differ according to the illuminance ratio of the luminous panel and vertical bracket. In the subjective evaluation (satisfaction with lighting environment, suitability to activity) the combined luminaire and 4000K received the best evaluation.

Accuracy evaluation of near-surface air temperature from ERA-Interim reanalysis and satellite-based data according to elevation

  • Ryu, Jae-Hyun;Han, Kyung-Soo;Park, Eun-Bin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.595-600
    • /
    • 2013
  • In order to spatially interpolate the near-surface temperature (Ta) values, satellite and reanalysis methods were used from previous studies. Accuracy of reanalysis Ta was generally better than that of satellite-based Ta, but spatial resolution of reanalysis Ta was large to use at local scale studies. Our purpose is to evaluate accuracy of reanalysis Ta and satellite-based Ta according to elevation from April 2011 to March 2012 in Northeast Asia that includes various topographic features. In this study, we used reanalysis data that is ERA-Interim produced by European Centre for Medium-Range Weather Forecasts (ECMWF), and estimated satellite-based Ta using Digital Elevation Meter (DEM), Normalized Difference Vegetation Index (NDVI), difference between brightness temperature of $11{\mu}m$ and $12{\mu}m$, and Land Surface Temperature (LST) data. The DEM data was used as auxiliary data, and observed Ta at 470 meteorological stations was used in order to evaluate accuracy. We confirmed that the accuracy of satellite-based Ta was less accurate than that of ERA-Interim Ta for total data. Results of analyzing according to elevation that was divided nine cases, ERA-Interim Ta showed higher accurate than satellite-based Ta at the low elevation (less than 500 m). However, satellite-based Ta was more accurate than ERA-Interim Ta at the higher elevation from 500 to 3500 m. Also, the width of the upper and lower quartile appeared largely from 2500 to 3500 m. It is clear from these results that ERA-Interim Ta do not consider elevation because of large spatial resolution. Therefore, satellite-based Ta was more effective than ERA-Interim Ta in the regions that is range from 500 m to 3500 m, and satellite-based Ta was recommended at a region of above 2500 m.

Tropical Misture Response Derived from Satellite Observations Corresponding to Sea Surface Temperature Anomaly (해수면온도의 ANOMALY에 상응하는 위성관측자료로부터 도출한 열대수증기 RESPONSE)

  • Hyo-Sang Chung
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.21 no.1
    • /
    • pp.47-54
    • /
    • 1993
  • The major positive sea surface temperature(SST) anomalies not only occur in the region with the most moisture increase, but also in the flank of the area with sinking motion in the Subtropics. As the large amount of water vapor has been increased by the SST anomaly, the increased of the SST is expected to destabilize the air and leads under moist adiabatic unstable conditions, to an enhanced development of moisture cluster. The 4.0 K change of SST causes the positive difference of Brightness Temperature(TB) of about 10.0k for water vapor channels of TOVS over the north eastern and central tropical Pacific Ocean, but the negative difference of TB of about 7.5 K is shifted southward and southeastward to Southern Pacific Ocean along the equator correspondingly. The difference of the TBs for IR water vapor channel $11(7.3{\mu}m)$ and $12(6.7{\mu}m)$ of TOVS indicative of the moisture distribution during two time periods(January 1983 and 1984), leads us to infer significant changes in the entire tropospheric circulations and the dynamic processes over the Pacific Ocean.

  • PDF

Characteristics of Brightness Temperature from MTSAT-1R on Lightning Events and Prediction over South Korea (MTSAT-1R 휘도온도를 이용한 낙뢰발생 특성 분석 및 예측)

  • Eom, Hyo-Sik;Suh, Myoung-Seok;Lee, Yun-Jeong
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.227-236
    • /
    • 2009
  • This study investigates the characteristics of cloud top brightness temperature (CTBT) of WV and IR1 from MTSAT-1R when lightning strikes in South Korea. For temporal and spatial collocations, lightnings, occurred only within ${\pm}5$ minutes from the six minutes added official satellite observation time (e.g., not 0600 UTC but 0606 UTC, considering the real scan time over South Korea), were selected. And the CTBTs corresponding to lightning spots were determined using the nearest pixel within 5 km. The brightness temperature difference (BTD, defined as WV - IR1) between two channels is negatively large when no lightning occurrs, whereas it increases up to positive values (sometimes, +5 K) and the largest frequency distributes around 225 K and 205 K in lightning cases. The probablistic approach for lightning frequency forecast, presented by Machado et al. (2008) in Southern America, was applied over South Korea and new exponential equations, with high coefficients of determination around 0.95 to 0.99, were developed using two channels' BTDs when lightning strikes. Moreover, a case study on 10th June, 2006, the largest number of lightning occurred between 2002 and 2006, was made. The major finding is that lightning activity is closely related to the dramatic decreases in BT and the increases in BTD (esp., equal to or larger than 0 K). Lightning frequency increases exponentially when BTD increases up to 0 K. Therefore, lightning forecast skill will be improved when the integrated strategy (synoptic background and satellite-based CTBT and BTD) is applied. It is believed that this study contributes to the application of the Korean first geostationary satellite (COMS), scheduled to launch at the end of this year, to severe weather detections.

  • PDF

Impact of SAPHIR Data Assimilation in the KIAPS Global Numerical Weather Prediction System (KIAPS 전지구 수치예보모델 시스템에서 SAPHIR 자료동화 효과)

  • Lee, Sihye;Chun, Hyoung-Wook;Song, Hyo-Jong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.141-151
    • /
    • 2018
  • The KIAPS global model and data assimilation system were extended to assimilate brightness temperature from the Sondeur $Atmosph{\acute{e}}rique$ du Profil $d^{\prime}Humidit{\acute{e}}$ Intertropicale par $Radiom{\acute{e}}trie$ (SAPHIR) passive microwave water vapor sounder on board the Megha-Tropiques satellite. Quality control procedures were developed to assess the SAPHIR data quality for assimilating clear-sky observations over the ocean, and to characterize observation biases and errors. In the global cycle, additional assimilation of SAPHIR observation shows globally significant benefits for 1.5% reduction of the humidity root-mean-square difference (RMSD) against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analysis. The positive forecast impacts for the humidity and temperature in the experiment assimilating SAPHIR were predominant at later lead times between 96- and 168-hour. Even though its spatial coverage is confined to lower latitudes of $30^{\circ}S-30^{\circ}N$ and the observable variable is humidity, the assimilation of SAPHIR has a positive impact on the other variables over the mid-latitude domain. Verification showed a 3% reduction of the humidity RMSD with assimilating SAPHIR, and moreover temperature, zonal wind and surface pressure RMSDs were reduced up to 3%, 5% and 7% near the tropical and mid-latitude regions, respectively.