• Title/Summary/Keyword: Brightness Transfer

Search Result 62, Processing Time 0.024 seconds

Introduction to Simulation Activity for CMDPS Evaluation Using Radiative Transfer Model

  • Shin, In-Chul;Chung, Chu-Yong;Ahn, Myoung-Hwan;Ou, Mi-Lim
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.282-285
    • /
    • 2007
  • Satellite observed brightness temperature simulation using a radiative transfer model (here after, RTM) is useful for various fields, for example sensor design and channel selection by using theoretically calculated radiance data, development of satellite data processing algorithm and algorithm parameter determination before launch. This study is focused on elaborating the simulation procedure, and analyzing of difference between observed and modelled clear sky brightness temperatures. For the CMDPS (COMS Meteorological Data Processing System) development, the simulated clear sky brightness temperatures are used to determine whether the corresponding pixels are cloud-contaminated in cloud mask algorithm as a reference data. Also it provides important information for calibrating satellite observed radiances. Meanwhile, simulated brightness temperatures of COMS channels plan to be used for assessing the CMDPS performance test. For these applications, the RTM requires fast calculation and high accuracy. The simulated clear sky brightness temperatures are compared with those of MTSAT-1R observation to assess the model performance and the quality of the observation. The results show that there is good agreement in the ocean mostly, while in the land disagreement is partially found due to surface characteristics such as land surface temperature, surface vegetation, terrain effect, and so on.

  • PDF

A Study on Edge Detection using Pixel Brightness Transfer Function in Low Light Level Environments (저조도 환경에서 화소의 휘도 변환 함수를 이용한 에지 검출에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1680-1686
    • /
    • 2015
  • Edge detection is an essential preprocessing for most image processing application, and there are several existing detection methods such as Sobel, Roberts, Laplacian, LoG(Laplacian of Gaussian) operators, etc. Those existing edge detection methods have not given satisfactory results since they do not offer enough pixel brightness change in low light level environment. Therefore, in this study new algorithms using brightness transfer function in the preprocessing and for edge detection applying standard deviation and average-weighted local masks are proposed. In addition, the performance of proposed algorithms was evaluated in comparison with the existing edge detection methods such as Sobel, Roberts, Prewitt, Laplacian, LoG operators.

Automatic Contrast Enhancement by Transfer Function Modification

  • Bae, Tae Wuk;Ahn, Sang Ho;Altunbasak, Yucel
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.76-86
    • /
    • 2017
  • In this study, we propose an automatic contrast enhancement method based on transfer function modification (TFM) by histogram equalization. Previous histogram-based global contrast enhancement techniques employ histogram modification, whereas we propose a direct TFM technique that considers the mean brightness of an image during contrast enhancement. The mean point shifting method using a transfer function is proposed to preserve the mean brightness of an image. In addition, the linearization of transfer function technique, which has a histogram flattening effect, is designed to reduce visual artifacts. An attenuation factor is automatically determined using the maximum value of the probability density function in an image to control its rate of contrast. A new quantitative measurement method called sparsity of a histogram is proposed to obtain a better objective comparison relative to previous global contrast enhancement methods. According to our experimental results, we demonstrated the performance of our proposed method based on generalized measures and the newly proposed measurement.

Lyman-alpha radiative transfer through outflowing halo models to understand both the observed spectra and surface brightness profiles of Lyman-alpha halos around high-z star-forming galaxies

  • Song, Hyunmi;Seon, Kwang-il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.59.3-59.3
    • /
    • 2018
  • With a recent observational study of extended Lyman-alpha halos around individual high-z star-forming galaxies by Leclercq et al. (2017) using MUSE, we perform radiative transfer calculations to see if Lyman-alpha scattering can explain the spatial extents of the halos together with their spectra. We adopt a spherically-symmetric halo model in which Lyman-alpha sources and neutral hydrogen (HI) medium have exponential density distributions. The HI medium is set to have outflowing motion based on a momentum-driven wind scenario in a gravitational potential well. We run our Lyman-alpha radiative transfer code, LaRT, upon this halo model for various sets of parameters regarding the HI medium such as temperature, optical depth, density scale radius, outflow velocities, and dust content. We analyze simulation results to see the impact of each parameter on Lyman-alpha spectra and surface brightness profiles, and degeneracies between the parameters. We also find a parameter set that best reproduces simultaneously the observed spectra and surface brightness profiles of the MUSE Lyman-alpha halos.

  • PDF

Radiative Transfer Simulation of Microwave Brightness Temperature from Rain Rate

  • Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.59-71
    • /
    • 2002
  • Theoretical models of radiative transfer are developed to simulate the 85 GHz brightness temperature (T85) observed by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer as a function of rain rate. These simulations are performed separately over regions of the convective and stratiform rain. TRMM Precipitation Radar (PR) observations are utilized to construct vertical profiles of hydrometeors in the regions. For a given rain rate, the extinction in 85 GHz due to hydrometeors above the freezing level is found to be relatively weak in the convective regions compared to that in the stratiform. The hydrometeor profile above the freezing level responsible for the weak extinction in convective regions is inferred from theoretical considerations to contain two layers: 1) a mixed (or mixed-phase) layer of 2 km thickness with mixed-phase particles, liquid drops and graupel above the freezing level, and 2) a layer of graupel extending from the top of the mixed layer to the cloud top. Strong extinction in the stratiform regions is inferred to result from slowly-falling, low-density ice aggregates (snow) above the freezing level. These theoretical results are consistent with the T85 measured by TMI, and with the rain rate deduced from PR for the convective and stratiform rain regions. On the basis of this study, the accuracy of the rain rate sensed by TMI is inferred to depend critically on the specification of the convective or stratiform nature of the rain.

Impedance Properties of Electroluminescent Device Containing Blended Polymer Single-Layer (고분자 블렌드를 이용한 EL 소자의 임피던스 특성)

  • 김주승;서부완;구할본;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.332-335
    • /
    • 2000
  • We fabricated organic electroluminescent (EL) devices with single layer of poly(3-dodeoylthiophene) (P3DoDT) hlended with different amounts of poly(N-vinylcarbazole) (PVK) as a emitting layer. The molar ratio between P3DoDT and PVK changed with 1:0, 2:1 and 1:1. To improve the external quantum efficiency of EL devices, we applied insulating layer, LiF layer, between polymer emitting layer and Al electrode. All of the devices emit orange-red light and it's can be explained that the energy transfer occurs from PVK to P3DoDT. In the voltage-current and voltage-brightness characteristics of devices applied LiF layer, current and brightness increased with increasing applied voltage. The brightness of the device have a molar ratio 1:1 with LiF layer was about 10 times larger than that of the device without PVK at 6V. Electrical impedance properties of ITO/emitting layer/LiF/Al devices were investigated. In the Cole-Cole plots of impedance data, one semicircle was observed. Therefore, the equivalent circuit for the devices can be designed as a single parallel resistor and capacitor network with series resistor.

  • PDF

Lyα Radiative Transfer: Modeling Spectrum and Surface Brightness Profile of Lyα Emitting Galaxies at z=3-6

  • Song, Hyunmi;Seon, Kwang-il;Hwang, Ho Seong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.37.1-37.1
    • /
    • 2019
  • We perform Lyα radiative transfer calculations for reproducing Lyα properties of star-forming galaxies at high redshifts. We model a galaxy as a halo in which the density distributions of Lyα sources and HI plus dust medium are described with exponential functions. We also consider an outflow of the medium that represents a momentum-driven wind in a gravitational potential well. We demonstrate that this outflowing halo model with Lyα scattering can successfully reproduce both the spectrum and the surface brightness profile of eight star-forming galaxies at z=3-6 observed with MUSE. The best-fit model parameters (i.e., the outflowing velocity and optical depth) for these galaxies are in good agreement with other studies. We also demonstrate benefits of using spectrum and surface brightness profile simultaneously to the constraints on model parameters and thus spatial/kinematic distributions of medium. We examine the impacts of individual model parameters and intrinsic spectrum on emerging spectrum and surface brightness profile. Further investigations on the escape fraction, spatially resolved spectra, and the spatial extent of Lyα halos are presented as well.

  • PDF

Desktop-LED lighting for Eye Muscle Movement by Adjusting the Light Illuminance and Color Temperature

  • Kim, Byoung-Chul;Kim, Seon-Jong;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.203-208
    • /
    • 2020
  • In this paper, we propose the design and implementation of a desktop LED stand and smart app that automatically adjusts color temperature and illuminance for optimal brightness and eye health by improving the structural problem of the LED stand. It is a tabletop LED stand that supports optimal brightness through color temperature control and heat transfer through infrared LED to relieve eye strain through blood circulation and muscle movement. The LED stand works with the smartphone to automatically adjust the optimal brightness and color temperature for the user's environment. In addition, the brightness of the infrared LED is adjusted to a living frequency of 4Hz to relax the eye muscles and reduce eye strain. This study implemented an effective measured data-based system of previous studies through the color temperature and illumination of LED lighting, and near-infrared rays, and presented meaningful results by conducting an experiment to prove the effect through subjects.

Soil Moisture Content Estimation Using Remote Sensing Technique (원격 측정 기법을 이용한 토양 함수비의 측정)

  • Lee, Jae Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.535-542
    • /
    • 1994
  • Remote sensing technique is based on the estimation of land surface characteristics from the measurement of the emitted radiation from the earth. The hydrologically related parameters studied using this approach include surface temperature, evapotranspiration, soil moisture, precipitation and snow. This study introduces a method for estimating moisture content of a bare soil from the observed and simulated brightness temperature. In a bare soil, microwave emission depends on moisture content, soil temperature, and surface roughness. The method is based on a radiative transfer model with some modifications of Fresnel reflection coefficient to take into account the effect of surface roughness. One smooth bare field and two fields with different surface roughness are prepared for the study. The results indicate that the effect of surface roughness is to increase the soil's brightness temperature and to reduce the slope of regression between brightness temperature and moisture contents.

  • PDF

THE MODIFIED BRIGHTNESS TEMPERATURE DIFFERENCE FOR AEROSOL DETECTION

  • Kim, Jae-Hwan;Ha, Jong-Sung;Lee, Hyun-Jin
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.794-796
    • /
    • 2006
  • This study investigated the Brightness Temperature Difference threshold as criterion between aerosols and clouds in conjunction with radiative transfer model. Surface temperature is caused by a significant error over 50% in the BTD threshold. In addition, The BTD threshold contains the uncertainties about 20% due to the surface emissivity and 8% due to the satellite zenith angle. Therefore, we have composed the Look-up table for BTD between 11㎛and 12㎛ according to satellite zenith angle, surface temperature, and surface emissivity. The modified BTD show the enhanced signal, especially over bright surface such as desert in China. However, a weak aerosol signal over Ocean remains in the modified BTD.

  • PDF