• Title/Summary/Keyword: Bright Channel Prior

Search Result 4, Processing Time 0.018 seconds

Single Image Haze Removal Technique via Pixel-based Joint BDCP and Hierarchical Bilateral Filter (픽셀 기반 Joint BDCP와 계층적 양방향 필터를 적용한 단일 영상 기반 안개 제거 기법)

  • Oh, Won-Geun;Kim, Jong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.257-264
    • /
    • 2019
  • This paper presents a single image haze removal method via a pixel-based joint BDCP (bright and dark channel prior) and a hierarchical bilateral filter in order to reduce computational complexity and memory requirement while improving the dehazing performance. Pixel-based joint BDCP reduces the computational complexity compared to the patch-based DCP, while making it possible to estimate the atmospheric light in pixel unit and the transmission more accurately. Moreover the bilateral filter, which can smooth an image effectively while preserving edges, refines the transmission to reduce the halo effects, and its hierarchical structure applied to edges only prevents the increase of complexity from the iterative application. Experimental results on various hazy images show that the proposed method exhibits excellent haze removal performance with low computational complexity compared to the conventional methods, and thus it can be applied in various fields.

Unsupervised Learning with Natural Low-light Image Enhancement (자연스러운 저조도 영상 개선을 위한 비지도 학습)

  • Lee, Hunsang;Sohn, Kwanghoon;Min, Dongbo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.135-145
    • /
    • 2020
  • Recently, deep-learning based methods for low-light image enhancement accomplish great success through supervised learning. However, they still suffer from the lack of sufficient training data due to difficulty of obtaining a large amount of low-/normal-light image pairs in real environments. In this paper, we propose an unsupervised learning approach for single low-light image enhancement using the bright channel prior (BCP), which gives the constraint that the brightest pixel in a small patch is likely to be close to 1. With this prior, pseudo ground-truth is first generated to establish an unsupervised loss function. The proposed enhancement network is then trained using the proposed unsupervised loss function. To the best of our knowledge, this is the first attempt that performs a low-light image enhancement through unsupervised learning. In addition, we introduce a self-attention map for preserving image details and naturalness in the enhanced result. We validate the proposed method on various public datasets, demonstrating that our method achieves competitive performance over state-of-the-arts.

Efficient Single Image Dehazing by Pixel-based JBDCP and Low Complexity Transmission Estimation (저 복잡도 전달량 추정 및 픽셀 기반 JBDCP에 의한 효율적인 단일 영상 안개 제거 방법)

  • Kim, Jong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.977-984
    • /
    • 2019
  • This paper proposes a single image dehazing that utilizes the transmission estimation with low complexity and the pixel-based JBDCP (Joint Bright and Dark Channel Prior) for the effective application of hazy outdoor images. The conventional transmission estimation includes the refinement process with high computational complexity and memory requirements. We propose the transmission estimation using combination of pixel- and block-based dark channel information and it significantly reduces the complexity while preserving the edge information accurately. Moreover, it is possible to estimate the transmission reflecting the image characteristics, by obtaining a different air-light for each pixel position of the image using the pixel-based JBDCP. Experimental results on various hazy images illustrate that the proposed method exhibits excellent dehazing performance with low complexity compared to the conventional methods; thus, it can be applied in various fields including real-time devices.

Adaptive White Point Extraction based on Dark Channel Prior for Automatic White Balance

  • Jo, Jieun;Im, Jaehyun;Jang, Jinbeum;Yoo, Yoonjong;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.383-389
    • /
    • 2016
  • This paper presents a novel automatic white balance (AWB) algorithm for consumer imaging devices. While existing AWB methods require reference white patches to correct color, the proposed method performs the AWB function using only an input image in two steps: i) white point detection, and ii) color constancy gain computation. Based on the dark channel prior assumption, a white point or region can be accurately extracted, because the intensity of a sufficiently bright achromatic region is higher than that of other regions in all color channels. In order to finally correct the color, the proposed method computes color constancy gain values based on the Y component in the XYZ color space. Experimental results show that the proposed method gives better color-corrected images than recent existing methods. Moreover, the proposed method is suitable for real-time implementation, since it does not need a frame memory for iterative optimization. As a result, it can be applied to various consumer imaging devices, including mobile phone cameras, compact digital cameras, and computational cameras with coded color.