• 제목/요약/키워드: Bridgewire

검색결과 5건 처리시간 0.016초

SUS 304 발열선을 사용한 전기식 착화기의 열특성 분석 (Thermal Transient Analysis of Electric Initiator Used SUS 304 Bridgewire)

  • 윤기은;류병태;최홍석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.184-187
    • /
    • 2005
  • SUS 304 발열선(직경 2.3mil)과 $Zr-KClO_4$ 기폭화약을 사용한 전기식 착화기에 대한 열특성을 시험하고 Fitted Wire Model로 분석한 결과, 약 $300^{\circ}C$ 부근에서 기폭화약과 관련된 열특성 파라미터가 급격하게 변화되었다. 이 현상은 기폭화약에 사용된 $KClO_4$의 상변화로 인한 흡열과 발열선과 기폭화약 계면의 물리적 변화로 발생된 것으로 판단되며, 결과로 열특성 시험으로 구한 파라미터가 유용한 온도 범위를 제시하였다.

  • PDF

STS 304 발열선 착화기의 열전이 특성 (Thermal Transient Characteristics of Initiator with STS 304 Bridgewire)

  • 윤기은;류병태;최창선
    • 한국추진공학회지
    • /
    • 제10권4호
    • /
    • pp.19-25
    • /
    • 2006
  • STS 304 발열선과 $Zr-KCIO_4$ 기폭화약을 사용한 전기식 착화기에 대한 열전이 특성을 시험하고 Fitted Wire Model로 분석한 결과, 약 $300^{\circ}C$ 부근에서 기폭화약과 관련된 열전이 특성 파라미터가 급격하게 변화되었다. 이 현상은 기폭화약에 사용된 $KCIO_4$의 상변화로 인한 흡열반응에 의해 발생된 것으로 판단된다.

기폭용 퓨즈의 RF 감도 특성 (A Characteristics of RF Sensitivity for a Firing Fuse)

  • 간종만;권준혁
    • 한국전자파학회논문지
    • /
    • 제15권6호
    • /
    • pp.573-578
    • /
    • 2004
  • 전기 기폭장치(EED, electroexplosive device)는 브리지 와이어, 추진제, 리드 핀 및 금속관으로 구성되었고, 기폭신호가 인가되면 브리지와이어의 발열에 의해 추진제를 점화시킨다. 또한 고출력 통신기나 레이더에서 방사되는 전자파에 의해 EED는 예기치 않은 기폭이 발생할 수 있어, EED에 대한 EMC 설계 및 시험관련 군사규격서를 제정하여 적용하고 있다. 본 논문은 항공기에 대한 전기체 EMC 시험평가를 수행할 때, 항공기에 설치 된 EED 대신에 사용할 기폭용 퓨즈의 RF 감도 특성을 기술하였다 RF 기폭수준은 전송선로 이론을 활용하여 예측하였고, 군사규격서에 규정된 DC 감도와 RE 감도를 측정하였다.

AN INTRODUCTION TO SEMICONDUCTOR INITIATION OF ELECTROEXPLOSIVE DEVICES

  • Willis K. E.;Whang, D. S.;Chang, S. T.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1994년도 제3회 학술강연회논문집
    • /
    • pp.21-26
    • /
    • 1994
  • Conventional electroexplosive devices (EED) commonly use a very small metal bridgewire to ignite explosive materials i.e. pyrotechnics, primary and secondary explosives. The use of semiconductor devices to replace “hot-wire” resistance heating elements in automotive safety systems pyrotechnic devices has been under development for several years. In a typical 1 amp/1 watt electroexplosive devices, ignition takes place a few milliseconds after a current pulse of at least 25 mJ is applied to the bridgewire. In contrast, as for a SCB devices, ignition takes place in a few tens of microseconds and only require approximately one-tenth the input energy of a conventional electroexplosive devices. Typically, when SCB device is driven by a short (20 $\mu\textrm{s}$), low energy pulse (less than 5 mJ), the SCB produces a hot plasma that ignites explosive materials. The advantages and disadvantages of this technology are strongly dependent upon the particular technology selected. To date, three distinct technologies have evolved, each of which utilizes a hot, silicon plasma as the pyrotechnic initiation element. These technologies are 1.) Heavily doped silicon as the resistive heating initiation mechanism, 2.) Tungsten enhanced silicon which utilizes a chemically vapor deposited layer of tungsten as the initiation element, and 3.) a junction diode, fabricated with standard CMOS processes, which creates the initial thermal environment by avalanche breakdown of the diode. This paper describes the three technologies, discusses the advantages and disadvantages of each as they apply to electroexplosive devises, and recommends a methodology for selection of the best device for a particular system environment. The important parameters in this analysis are: All-Fire energy, All-Fire voltage, response time, ease of integration with other semiconductor devices, cost (overall system cost), and reliability. The potential for significant cost savings by integrating several safety functions into the initiator makes this technology worthy of attention by the safety system designer.

  • PDF

ELECTRONIC SAFING OF A DIODE LASER ARM-FIRE DEVICE

  • Kenneth E. Willis;Suk Tae Chang
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1995년도 제4회 학술강연회논문집
    • /
    • pp.171-175
    • /
    • 1995
  • Semiconductor diode lasers that can generate one watt or more of optical energy for tens of milliseconds (quasi continuous wave) are now readily available. Several researchers have demonstrated that this power level, when properly coupled, can reliably initiate pyrotechnic mixtures. This means that the initiator containing the pyrotechnic can be protected against inadvertent initiation from electromagnetic radiation or electrostatic discharge by a conducting Faraday cage surrounding the explosive. Only a small dielectric window penetrates the housing of the initiator, thereby eliminating the conductors necessitated by a bridgewire electroexplosive device. The diode laser itself, however, functions at a low voltage (typically 3 volts) and hence is susceptible to inadvertent function from power supply short circuits, electrostatic discharge or induced RF energy. The rocket motor arm-fire device de-scribed in this paper uses a diode laser, but protects it from unintentional function with a Radio Frequency Attenuating Coupler (RFAC).The RFAC, invented by ML Aviation, a UK company, transfers power into a Faraday cage via magnetic flux, thereby protecting the diode, its drive circuit and the pyrotechnic from all electromagnetic and electrostatic hazards. The first production application of a diode laser and RFAC device was by the Korean Agency for Defense Development.

  • PDF