• Title/Summary/Keyword: Bridge-edge

Search Result 107, Processing Time 0.026 seconds

STRESS ANALYSIS ON THE ALVEOLAR BONE OF CANTILEVER BRIDGES REPLACING MAXILLARY LATERAL INCISOR (상악측절치 수복을 위한 Cantilever bridge)

  • Kim Hyoung-Soo;Yang Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.303-316
    • /
    • 1993
  • The purpose of this study was to analysis the stress distribution induced by three unit PFM bridges and various cantilever bridges replacing maxillary latersal incisor. The simplified two-dimensional photoelastic models used for this study was contructed in the folio- wing way. CR/R ratio was designed to be 1 : 1, 1 : 1.25 and 1 : 1.5. The pontics of cantilever bridge supported by maxillary canines consisted of wrap-around type, rest-extension type, and simple type. 3-unit PFM bridge was constructed with traditional method. 1kg vertical static load was applied on the center of the incisal edge of the pontic. The stress pattern was examined and recorded by photography. The results obtained were as follows ; 1. The magnitude of stress on the abutment root apex area of a traditional 3-unit bridge was the lowest. 2. The model of cantilevered pontic with a rest showed the relatively well distributed stress around the abutment tooth. The model with simple pontic generated the greatest stress concentration in the supporting structure of the abutment tooth. 3. As the height of bone level reduced, the rotational and vertical force increased around the abutment tooth. 4. The stress concentration of the 3-unit bridges occured on the root apex and stress concentration of the cantilever briage occured on the root apex and cervix area, 5. In the case of the cantilever bridge, stress concentrated distally on the root apex area of the abutment tooth and additional stress was observed mesially on the upper part of the root. Especially in the case of the simple pontic, was phenomenon was more apparent than the others. 6. Force applied to cantilevered pontic was transmitted to the adjacent central incisor through the contact surface. Stress was markedly observed on the mesial cervix area in the case of simple pontic and on the root apex area in the case of wrap-around type and rest-extension type.

  • PDF

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

Development of Macro-Element for the Analysis of Elastically Supported Plates (탄성 지지된 판구조 해석을 위한 매크로 요소의 개발)

  • 강영종;박남회;앙기재;최진유
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.25-35
    • /
    • 2000
  • The superstructure of general bridge like slab bridge and slab on girder bridge is composed of elastically supported isotropic plate. The objective of this study is to develop the new analysis method for elastically supported plate with general edge beam or girder(boundaries) under arbitrary out of plane loading. The displacement solutions for the macro-element of plate and beam are obtained by solving for the unknown interactive forces and moments at the beam or nodal line locations after satisfying equilibrium equation along the nodal line. The displacement functions for macro-elements ate proposed in single Fourier series using harmonic analysis, and the equilibrium equations of nodal line are composed by using slope-deflection method. The proposed analysis method is programmed by MS-Fortran and can be applied to all types of isotropic decks with bridge-type boundaries. Numerical examples involving elastically supported plates with various aspect ratio, loading cases, and bridge-type boundary conditions are presented to demonstrate the accuracy of this program. The major advantage of this new analysis method is the development of a simple solution algorithm, leads to obtain rapidly responses of bridge deck system. This proposed method can be used in parametric study of behavior of bridge decks.

  • PDF

Experimental Investigation of Aerodynamic Force Coefficients and Flutter Derivatives of Bridge Girder Sections (교량단면의 공기력계수 및 플러터계수에 관한 실험적 연구)

  • Cho, Jae-Young;Lee, Hak-Eun;Kim, Young-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.887-899
    • /
    • 2006
  • The aim of this study is to investigate a correlation between fundamental data on aerodynamic characteristics of bridge girder cross-sections, such as aerodynamic force coefficients and flutter derivatives, and their aerodynamic behaviour. The section model tests were carried out in three stages. In the first stage, seven deck configurations were studied, namely; Six 2-edge girders and one box girder. In this stage, changes in aerodynamic force coefficients due to geometrical shape of girders, incidence angle of flow, wind directions and turbulence intensities were studied by static section model tests. In the second stage, the dynamic section model tests were carried out to investigate the relativity of static coefficients to dynamic responses. And finally, the two-dimensional (lift-torsion) aerodynamic derivatives of three bridge deck configurations were investigated by dynamic section model tests. The aerodynamic derivatives can be best described as a representation of the aerodynamic damping and the aerodynamic stiffness provided by the wind for a given deck geometry. The method employed here to extract these unsteady aerodynamic properties is known as the initial displacement technique. It involves the measurement of the decay in amplitude with time of an initial displacement of the deck in heave and torsion, for various wind speeds, in smooth flow. It is suggested that the proposed aerodynamic force coefficients and flutter derivatives of bridge girder sections will be potentially useful for the aeroelastic analysis and buffeting analysis.

Dual Mode Phase-Shifted ZVS-PWM Series Load Resonant High-Frequency Inverter for Induction Heating Super Heated Steamer

  • Hisayuki Sugimura;Hidekazu Muraoka;Tarek Ahmed;Srawouth Chandhaket;Eiji Hiraki;Mutsuo Nakaoka;Lee, Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.138-151
    • /
    • 2004
  • In this paper, a constant frequency phase shifting PWM-controlled voltage source full bridge-type series load resonant high-frequency inverter using the $4^{th}$ generation IGBT power modules is presented for innovative consumer electromagnetic induction heating applications, such as a hot water producer, steamer and super heated steamer. The bridge arm side link passive capacitive snubbers in parallel with each power semiconductor device and AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is evaluated and discussed on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency inverter topology, what is called, DE class type, including the variable-power variable-frequency regulation function can expand zero voltage soft switching commutation area even under low output power setting ranges, which is more suitable and acceptable for newly developed induction heated dual pack fluid heaters. Furthermore, even the lower output power regulation mode of this high-frequency load resonant tank inverter circuit is verified so that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

A Novel Induction Heating Type Super Heated Vapor Steamer using Dual Mode Phase Shifted PWM Soft Switching High Frequency Inverter

  • Sugimura, Hisayuki;Eid, Ahmad;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.774-777
    • /
    • 2005
  • In this paper, a constant frequency phase shifting PWM controlled voltage source full bridge-type series load resonant high-frequency inverter using the IGBT power modules is presented for innovative consumer electromagnetic induction heating applications such as a hot water producer, steamer and super heated steamer. The full bridge arm side link passive quasi-resonant capacitor snubbers in parallel with the each power semiconductor device and high frequency AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is discussed and evaluated on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency soft switching PWM inverter topology, what is called class DE type. including the variable-power variable-frequency(VPVF) regulation function can expand zero voltage soft switching commutation range even under low output power setting ranges, which is more suitable and acceptable for induction heated dual packs fluid heater developed newly for consumer power utilizations. Furthermore, even in the lower output power regulation mode of this high-frequency load resonant tank high frequency inverter circuit it is verified that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

  • PDF

Flexural Reliability Assessment of PSC-I Girder Rail Bridge Under Operation (사용중 PSC-I 거더 철도 교량의 휨모멘트에 대한 신뢰도 분석)

  • Kim, Ki Hyun;Yeo, Inho;Sim, Hyoung-Bo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.187-194
    • /
    • 2016
  • It is necessary to determine reliability indexes of existing railway bridges prior to setting up a proper target reliability index that can be used to introduce a reliability based limit state design method to design practice. Reliability is evaluated for a six PSC-I girder railway bridge, which is one of many representative types of double-track railway bridges. The reliability assessment is carried out for an edge girder subjected to bending moment. In the assessment, the flexural resistance and the fixed-load effect were obtained using existing statistical values from previous research on the introduction of limit state design to road bridge design. On the other hand, the live-load effect was determined using statistical values obtained from field measurement for the Joong-ang corridor, on which heavy freight trains are frequently passing. The reliability assessment is performed by AFOSM(Advanced First Order Second Moment method) for the limit state equation, and a sensitivity analysis for the reliability is performed for each factor of the load and resistance effects.

A Novel Prototype of Duty Cycle Controlled Soft-Switching Half-Bridge DC-DC Converter with Input DC Rail Active Quasi Resonant Snubbers Assisted by High Frequency Planar Transformer

  • Fathy, Khairy;Morimoto, Keiki;Suh, Ki-Young;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • This paper presents a new circuit topology of active edge resonant snubbers assisted half-bridge soft switching PWM inverter type DC-DC high power converter for DC bus feeding power plants. The proposed DC-DC power converter is composed of a typical voltage source-fed half-bridge high frequency PWM inverter with a high frequency planar transformer link in addition to input DC busline side power semiconductor switching devices for PWM control scheme and parallel capacitive lossless snubbers. The operating principle of the new DC-DC converter treated here is described by using switching mode equivalent circuits, together with its unique features. All the active power switches in the half-bridge arms and input DC buslines can achieve ZCS turn-on and ZVS turn-off commutation transitions. The total turn-off switching losses of the power switches can be significantly reduced. As a result, a high switching frequency IGBTs can be actually selected in the frequency range of 60 kHz under the principle of soft switching. The performance evaluations of the experimental setup are illustrated practically. The effectiveness of this new converter topology is proved for such low voltage and large current DC-DC power supplies as DC bus feeding from a practical point of view.

Summarizing the Differences in Chinese-Vietnamese Bilingual News

  • Wu, Jinjuan;Yu, Zhengtao;Liu, Shulong;Zhang, Yafei;Gao, Shengxiang
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1365-1377
    • /
    • 2019
  • Summarizing the differences in Chinese-Vietnamese bilingual news plays an important supporting role in the comparative analysis of news views between China and Vietnam. Aiming at cross-language problems in the analysis of the differences between Chinese and Vietnamese bilingual news, we propose a new method of summarizing the differences based on an undirected graph model. The method extracts elements to represent the sentences, and builds a bridge between different languages based on Wikipedia's multilingual concept description page. Firstly, we calculate the similarity between Chinese and Vietnamese news sentences, and filter the bilingual sentences accordingly. Then we use the filtered sentences as nodes and the similarity grade as the weight of the edge to construct an undirected graph model. Finally, combining the random walk algorithm, the weight of the node is calculated according to the weight of the edge, and sentences with highest weight can be extracted as the difference summary. The experiment results show that our proposed approach achieved the highest score of 0.1837 on the annotated test set, which outperforms the state-of-the-art summarization models.

Effects of vortex generators on the wind load of a flat roof: A computational study

  • Zhao, Yagebai;Deng, Xiaolong;Zhang, Hongfu;Xin, Dabo;Liu, Zhiwen
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Vortex generators are commonly used in mechanical engineering and the aerospace industry to suppress flow separation owing to their advantages of simple structure, economic viability, and high level of efficiency. Owing to the flow separation of the incoming wind on the leading edge, a suction area is formed on the roof surface, which results in a lifting effect on the roof. In this research, vortex generators were installed on the windward surface of a flat roof and used to disturb to roof flow field and reduced suction based on flow control theory. Computational fluid dynamics (CFD) simulations were performed in this study to investigate the effects of vortex generators on reduce suction. It was determined that when the vortex generator was installed on the top of the roof on the windward surface, it had a significant control effect on reduce suction on the roof leading edge. In addition, the influence of parameters such as size, placement interval, and placement position of the vortex generator on the control effect of the roof's suction is also discussed.