• Title/Summary/Keyword: Bridge-edge

Search Result 107, Processing Time 0.029 seconds

Behaviour and design of structural steel pins

  • Bridge, R.Q.;Sukkar, T.;Hayward, I.G.;van Ommen, M.
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.97-110
    • /
    • 2001
  • Architectural steel structures with visible tension and compression members are becoming more prevalent as a popular form of construction that reflects the nature of the resistance to the applied loads. These members require the use of structural steel pins at their ends to ensure either axial tension or axial compression in the members. Structural pins have been used as a means of connection for centuries and it would appear that their behaviour is relatively well understood. However, the rules for the design of pins vary quite considerably from code to code and this has caused some confusion amongst consulting structural engineers operating internationally. To provide some insight into this problem, a comprehensive testing program has been carried to examine the influence of parameters such as pin diameter, material properties of the pin, thickness of the loading plates, material properties of the loading plates and the distance of the pin to the edge of the loading plates. The modes of failure have been carefully examined. Based on this study, modifications to current design procedures are proposed that properly take into account the different possible modes of failure.

Design criteria of wind barriers for traffic -Part 1: wind barrier performance

  • Kwon, Soon-Duck;Kim, Dong Hyawn;Lee, Seung Ho;Song, Ho Sung
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.55-70
    • /
    • 2011
  • This study investigates the design criteria required for wind barriers to protect vehicles running on an expressway under a high side wind. At the first stage of this study, the lateral deviations of vehicles in crosswinds were computed from the commercial software, CarSim and TruckSim, and the critical wind speeds for a car accident were then evaluated from a predefined car accident index. The critical wind speeds for driving stability were found to be 35 m/s for a small passenger car, yet 30 m/s for a truck and a bus. From the wind tunnel tests, the minimum height of a wind barrier required to reduce the wind speed by 50% was found to be 12.5% of the road width. In the case of parallel bridges, the placement of two edge wind barriers plus one wind barrier at center was recommended for a separation distance larger than 20 m (four lanes) and 10 m (six lanes) respectively, otherwise two wind barriers were recommended.

Nanotechnology in reproductive medicine: Opportunities for clinical translation

  • Shandilya, Ruchita;Pathak, Neelam;Lohiya, Nirmal Kumar;Sharma, Radhey Shyam;Mishra, Pradyumna Kumar
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.4
    • /
    • pp.245-262
    • /
    • 2020
  • In recent years, nanotechnology has revolutionized global healthcare and has been predicted to exert a remarkable effect on clinical medicine. In this context, the clinical use of nanomaterials for cancer diagnosis, fertility preservation, and the management of infertility and other pathologies linked to pubertal development, menopause, sexually transmitted infections, and HIV (human immunodeficiency virus) has substantial promise to fill the existing lacunae in reproductive healthcare. Of late, a number of clinical trials involving the use of nanoparticles for the early detection of reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics have been conducted. However, most of these trials of nanoengineering are still at a nascent stage, and better synergy between pharmaceutics, chemistry, and cutting-edge molecular sciences is needed for effective translation of these interventions from bench to bedside. To bridge the gap between translational outcome and product development, strategic partnerships with the insight and ability to anticipate challenges, as well as an indepth understanding of the molecular pathways involved, are highly essential. Such amalgamations would overcome the regulatory gauntlet and technical hurdles, thereby facilitating the effective clinical translation of these nano-based tools and technologies. The present review comprehensively focuses on emerging applications of nanotechnology, which holds enormous promise for improved therapeutics and early diagnosis of various human reproductive tract diseases and conditions.

3D Finite Element Analysis of High Tension Bolted Joints (고장력 볼트 이음부의 3차원 유한요소 해석)

  • Shim, Jae Soo;Kim, Chun Ho;Kim, Dong Jo
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.407-414
    • /
    • 2004
  • Bridges in common use are expected to have more varieties of load in their connected members and bolts than in construction. Faults in connection members or bolts occur so often according to the time flow. One of the purposes of this study is to find out the behavior and structural features of high-tension bolted joints with faults that are very difficult and cost much to find out through experimentation with finite element analysis. Another purpose of this study is to provide sufficient data, estimated experimental results, and the scheme of the test plate for an economical experimental study in the future. Surveys of bridges with a variety of faults and statistical classifications of their faults were performed, as was a finite element analysis of the internal stress and the sliding behavior of standard and defective bridge models. The finite element analysis of the internal stress was performed according to the interval of the bolt, the thickness of the plate, the distance of the edge, the diameter of the bolt, and the expansion of the construction. Furthermore, the analysis explained the sliding behavior of high-tension bolt joints and showed the geometric non-linear against the large deformation, and the boundary non-linear against the non-linear in the contact surface, including the material non-linear, to best explain the exceeding of the yield stress by sliding. A normally bolted high-tension bolt joint and deduction of bolt tension were also analyzed with the finite element analysis of bridge-sliding behavior.

Image Compression Using DCT Map FSVQ and Single - side Distribution Huffman Tree (DCT 맵 FSVQ와 단방향 분포 허프만 트리를 이용한 영상 압축)

  • Cho, Seong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2615-2628
    • /
    • 1997
  • In this paper, a new codebook design algorithm is proposed. It uses a DCT map based on two-dimensional discrete cosine of transform (2D DCT) and finite state vector quantizer (FSVQ) when the vector quantizer is designed for image transmission. We make the map by dividing input image according to edge quantity, then by the map, the significant features of training image are extracted by using the 2D DCT. A master codebook of FSVQ is generated by partitioning the training set using binary tree based on tree-structure. The state codebook is constructed from the master codebook, and then the index of input image is searched at not master codebook but state codebook. And, because the coding of index is important part for high speed digital transmission, it converts fixed length codes to variable length codes in terms of entropy coding rule. The huffman coding assigns transmission codes to codes of codebook. This paper proposes single-side growing huffman tree to speed up huffman code generation process of huffman tree. Compared with the pairwise nearest neighbor (PNN) and classified VQ (CVQ) algorithm, about Einstein and Bridge image, the new algorithm shows better picture quality with 2.04 dB and 2.48 dB differences as to PNN, 1.75 dB and 0.99 dB differences as to CVQ respectively.

  • PDF

Development of Abnormal Behavior Monitoring of Structure using HHT (HHT를 이용한 이상거동 시점 추정 기법 개발)

  • Kim, Tae-Heon;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.92-98
    • /
    • 2015
  • Recently, buildings tend to be large size, complex shape and functional. As the size of buildings is becoming massive, the need for structural health monitoring (SHM) technique is increasing. Various SHM techniques have been studied for buildings which have different dynamic characteristics and influenced by various external loads. "Abnormal behavior point" is a moment when the structure starts vibrating abnormally and this can be detected by comparing between before and after abnormal behavior point. In other words, anomalous behavior is a sign of damage on structures and estimating the abnormal behavior point can be directly related to the safety of structure. Abnormal behavior causes damage on structures and this leads to enormous economic damage as well as damage for humans. This study proposes an estimating technique to find abnormal behavior point using Hilber-Huang Transform which is a time-frequency signal analysis technique and the proposed algorithm has been examined through laboratory tests with a bridge model using a shaking table.

An experimental study on the fretting fatigue crack behaviour of A12024-T4 (A12024-T4의 프레팅 피로균열거동에 관한 실험적 연구)

  • Lee, Bong-Hun;Lee, Sun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.511-518
    • /
    • 1997
  • The technique of fretting fatigue test was developed and fretting fatigue tests of A12024-T4 were conducted under several conditions. The newly developed calibration methods for measuring surface contact tractions showed good linearity and repeatability. The plate type specimen to which tow bridge type pads were attached and vision system was used to observe the crack behaviour. The oblieque cracks appeared in the early stage of crack growth and they became mode I cracks as they grow about 1 mm. The mode I transition points were found to be longer when surface tractions are higher or bulk stress is lower. Before the crack becomes mode I crack, 'well point' where crack grow about rate is minimum, was detected under every experimental condition. The crack behaviour was found to be affected by surface tractions, contact area, bulk stress. It was also found that partial slip and stick condition is most detrimental and the crack starts from the boundary of stick and slip. For gross slip crack started at the outside edge of pad. After crack mode transition, fretting fatigue cracks showed almost same behaviour of plain mode I fatigue cracks. Equivalent stress intensity factor was used to analyze the behaviour of fretting fatigue cracks and it was found that stress intensity factors can be applied to fretting fatigue cracks.

A Study on Damage Process Analysis for Steel Pier Subjected to Seismic Excitation (강한 지진 하중하에서 강재 교각의 손상 거동 연구)

  • Park, Yeon Soo;Park, Keun Koo;Park, Sun Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.251-258
    • /
    • 2000
  • Based on the numerical investigations using steel bridge pier subjected to strong seismic excitations a new approach to seismic damage assessment for steel structures and their members has been proposed in conjunction with the suggested definition of failure state. The relevant failure form of the steel pier is evaluated. It is revealed that when a seismic load has a short period, the failure of global buckling beyond the allowable displacement is more dominant than that by that of the local buckling caused by the accumulation of plastic strain. When a seismic load is not beyond this certain part, but repeats within the range of where a plastic deformation occurs, the plastic strain is accumulated on the partial element of bottom edge of steel pier and the failure occurs by the local buckling from the accumulated plastic local strain.

  • PDF

Development of Structure Dynamic Characteristics Analysis System Prototype using Image Processing Technique (영상처리기법을 이용한 구조물 동특성 분석 시스템 프로토타입 개발)

  • Jo, Byung-Wan;Lee, Yun-Sung;Kim, Jung-Hoon;Kim, Do-Keun;Yoon, Kwang-Won
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.11-21
    • /
    • 2016
  • Recently, structure safety management techniques using cutting-edge technology(Displacement senor, sensor of acceleration) has emerged as an important issue owing to the aging of infrastructure such as bridge and building. In general, the structural monitoring system for structure safety management is based on IT technology and it is expensive to install. In this paper developed an image-based structure dynamic characteristic analysis system prototype to assess the damage of structure in a more cost-effective way than traditional structure health monitoring system. The inspector can take a video of buildings or other structures with digital camera or any other devices that is passible to take video, and then using NCC calculation for image processing technique to get natural frequency. This system is analysis of damage of the structure using a compare between the frequency response ratio and functions when problems are occurs send alarm to administrator. This system is easier to install and remove than previous monitoring sensor in economical way.

Development of Flexure Applied Bond head for Die to Wafer Hybrid Bonding (Die to Wafer Hybrid Bonding을 위한 Flexure 적용 Bond head 개발)

  • Jang, Woo Je;Jeong, Yong Jin;Lee, Hakjun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.171-176
    • /
    • 2021
  • Die-to-wafer (D2W) hybrid bonding in the multilayer semiconductor manufacturing process is one of wafer direct bonding, and various studies are being conducted around the world. A noteworthy point in the current die-to-wafer process is that a lot of voids occur on the bonding surface of the die during bonding. In this study, as a suggested method for removing voids generated during the D2W hybrid bonding process, a flexible mechanism for implementing convex for die bonding to be applied to the bond head is proposed. In addition, modeling of flexible mechanisms, analysis/design/control/evaluation of static/dynamics properties are performed. The proposed system was controlled by capacitive sensor (lion precision, CPL 290), piezo actuator (P-888,91), and dSpace. This flexure mechanism implemented a working range of 200 ㎛, resolution(3σ) of 7.276nm, Inposition(3σ) of 3.503nm, settling time(2%) of 500.133ms by applying a reverse bridge type mechanism and leaf spring guide, and at the same time realized a maximum step difference of 6 ㎛ between die edge and center. The results of this study are applied to the D2W hybrid bonding process and are expected to bring about an effect of increasing semiconductor yield through void removal. In addition, it is expected that it can be utilized as a system that meets the convex variable amount required for each device by adjusting the elongation amount of the piezo actuator coupled to the flexible mechanism in a precise unit.