• Title/Summary/Keyword: Bridge superstructure

Search Result 239, Processing Time 0.025 seconds

An experimental study on the performance of silencers for exhaust merchant ships considering air flow velocity (관내 유속을 고려한 상선의 배기관용 소음기의 성능실험연구)

  • Jae-Kwang Eom;Sa-Soo Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.108-115
    • /
    • 2001
  • The noise level of the navigation bridge as well as topside of the superstructure is dominated by the exhaust gas noise of the high-powered main engine and generator engine of special purpose vessels. In the case of the noise radiated from the top of the funnel. the exhaust pipe can be fitted with a silencer to reduce the propagated noise level. This paper is prepared based on an experimental performance test results of the silencers for generator-engine exhaust gas noise with consideration of air velocity. Two silencers were examined to check the performance of noise reduction in cases of air velocity 0m/s and 32m/s. In the sound reduction test, 400mm and 600mm diameter pipe ducts equipped with an axial fan were used as exhaust gas pipe system in the actual ship. The test procedure and results are presented in detail.

  • PDF

Effects of Pavement Stiffness on the Structural Behavior of Orthotropic Steel Plate Deck (포장체의 강성이 강상판의 거동에 미치는 영향)

  • 이환우;박순호;이동준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.385-392
    • /
    • 2001
  • The stiffness of pavement is scarcely considered in structural analysis of the superstructure bridge. It will be reasonable in the case of asphalt concrete pavement over concrete deck plate because stiffness of the pavement compared with concrete deck plate can be ignored. Additionally, it is considered correct to do a design with a safety. However, various pavement materials which have even value reaching to the elastic modulus of concrete are applied to the orthotropic steel deck plate which has a relatively less stiffness comparing with the concrete deck plate. In this paper, the steel plate deck of the bridge of real project was modeled considering the pavement stiffness for the FEM analysis and the linear elastic analysis was performed. It was assumed to be perfectly bonded between the steel plate deck and the pavement and the temperature effect was ignored. It was analyzed on the vertical deflection of steel deck plate influencing to the serviceability of pavement and the bending stress of steel deck plate related to the fatigue life. As a result, It was indicated that the structural behavior of the orthotropic steel deck plate could be affected by the stiffness of pavement in some cases.

  • PDF

Basic Design for Earthquake Resistance of Typical Bridges (일반교량의 내진성능 확보를 위한 기본설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • Structural elements of typical bridges are superstructure, connections, substuctures and foundations and earthquake resistance is decided with the failure mechanism formed by substuctures and connections. Therefore earthquake resistant design should be carried out in the basic design step where design strengths, e.g. design sections for structural elements are determined. The Earthquake Resistant Design Part of Korean Roadway Bridge Design Code provides two basic design procedures. The first conventional procedure applies the Code-provided response modification factors. The second new procedure is the ductility-based earthquake resistant design, where designer can determine the response modification factors. In this study, basic designs including the two design processes are carried out for a typical bridge and supplements are identified in view of providing earthquake resistance.

Flexural analysis of transverse joints of prefabricated T-girder bridge superstructure

  • Kye, Seungkyung;Jung, Hyung-Jo;Park, Sun-Kyu
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.89-102
    • /
    • 2021
  • Rapid construction of prefabricated bridges requires minimizing the field work of precast members and ensuring structural stability and constructability. In this study, we conducted experimental and analytical investigations of transverse joints of prefabricated T-girder bridge superstructures to verify the flexural performance and serviceability. In addition, we conducted parametric studies to identify the joint parameters. The results showed that both the segmented and continuous specimens satisfied the ultimate flexural strength criterion, and the segmented specimen exhibited unified behavior, with the flexural strength corresponding to that of the continuous specimen. The segmented specimens exhibited elastic behavior under service load conditions, and the maximum crack width satisfied the acceptance criteria. The reliability of the finite element model of the joint was verified, and parametric analysis of the convexity of the joint section and the compressive strength of the filler concrete showed that the minimum deflection and crack width occurred at a specific angle. As the strength of the filler concrete increased, the deflection and crack width decreased. However, we confirmed that the reduction in the crack width was hardly observed above a specific strength. Therefore, a design suitable for prefabricated bridges and accelerated construction can be achieved by improving the joint specifications based on the required criteria.

Development of Macro-Element for the Analysis of Elastically Supported Plates (탄성 지지된 판구조 해석을 위한 매크로 요소의 개발)

  • 강영종;박남회;앙기재;최진유
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.25-35
    • /
    • 2000
  • The superstructure of general bridge like slab bridge and slab on girder bridge is composed of elastically supported isotropic plate. The objective of this study is to develop the new analysis method for elastically supported plate with general edge beam or girder(boundaries) under arbitrary out of plane loading. The displacement solutions for the macro-element of plate and beam are obtained by solving for the unknown interactive forces and moments at the beam or nodal line locations after satisfying equilibrium equation along the nodal line. The displacement functions for macro-elements ate proposed in single Fourier series using harmonic analysis, and the equilibrium equations of nodal line are composed by using slope-deflection method. The proposed analysis method is programmed by MS-Fortran and can be applied to all types of isotropic decks with bridge-type boundaries. Numerical examples involving elastically supported plates with various aspect ratio, loading cases, and bridge-type boundary conditions are presented to demonstrate the accuracy of this program. The major advantage of this new analysis method is the development of a simple solution algorithm, leads to obtain rapidly responses of bridge deck system. This proposed method can be used in parametric study of behavior of bridge decks.

  • PDF

Development on Reconstruction Cost Model for Decision Making of Bridge Maintenance (교량 유지관리 의사결정 지원을 위한 개축비용 산정모델 개발)

  • Sun, Jong-Wan;Lee, Dong-Yeol;Lee, Min-Jae;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.533-542
    • /
    • 2016
  • The periodic maintenance of bridges is necessary once they have been constructed and its cost depends on various factors, such as their condition, environmental conditions and so on. To make a decision support system, it is essential to establish a basic reconstruction cost model. In this study, a regression model is suggested for calculating the reconstruction cost for typical cases and influential factors, depending on the type of bridge and its components, by analyzing the basic bridge specifications based on the data of the Bridge Management System (BMS). The details for each case were estimated in consideration of the cost calculation variables. The details for each case were estimated in consideration of the cost calculation variables. The cost model for the new construction of the superstructure, substructure and foundation and the temporary bridge construction and demolition costs were drawn from the regression analysis of the estimation results of typical cases according to the cost calculation variables. The reconstruction costs for different types of bridge were obtained using the cost model and compared with those in the literature. The cost model developed herein is expected to be utilized effectively in maintenance decision making.

A Study on Bridge Construction Risk Analysis for Third-Party Damage (교량공사 제3자 피해 손실에 의한 리스크 분석 연구)

  • Ahn, Sung-Jin;Nam, Kyung-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.137-145
    • /
    • 2020
  • The recent bridge construction projects demand thorough and systematic safety and risk management, due to the increase of risk factors following the introduction of new and complex construction methods and technologies. Among many types of damages that can occur in bridge construction projects, the damages to third parties who are not directly related to the existing property of the contractor construction project can also bring about critical loss in the project in order to compensate the damages. Therefore, risks that could be caused by the loss occurred to indemnify the third party damages should be clearly analyzed, although there are not subsequent amount of studies focusing on the issue. Based on the past record of insurance payment from domestic insurance companies for bridge construction projects, this study aimed to analyze the risk factors of bridge construction for loss caused to compensate the third-party damages happened in actual bridge construction projects and to develop a quantified and numerical predictive loss model. In order to develop the model, the loss ratio was selected as the dependent variable; and among many analyzed independent variables, the superstructure, foundation, flood, and ranking of contractors were the four significant risk factor variables that affect the loss ratio. The results produced can be used as an essential guidance for balanced risk assessment, supplementing the existing analysis on material losses in bridge construction projects by taking into account the third-party damage and losses.

A Study on Behavior of Post-integrated Abutment Bridge When Abutment and Bridge Decks are Jammed (교대 협착 발생 시 무조인트화 교량의 거동 분석 연구)

  • Park, Yang Heum;Nam, Moon S.;Jang, Il Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.31-35
    • /
    • 2021
  • The expansion joints installed on the bridge for the accommodation of expansion and contraction of the supper structure are essential members of the bridge. However, the expansion joints are deteriorated over time and the waterproof function weakens, causing rainwater to penetrate and deteriorate the structure. In order to solve the traffic congestion caused by frequent replacement of the old expansion joints along with the deterioration of the structure, a post-integrated abutment bridge in which the existing expansion joints are removed and replaced with reinforced concrete link connection has been applied to highway bridges since 2016. After the post-integrated abutment method was applied, it was partially applied to bridges in which the superstructure and abutment were jammed. In this study, the causes of problems that may occur when the post-integrated abutment method is applied to the jammed bridge were analyzed numerically. It was analyzed that damage occurred in the link connection part. Based on the results of this study, the application condition for the post-integrated abutment method is reinforced as it is not possible to apply the post-integrated abutment method to bridges are already jammed.

Comparison of Behaviors of Jointless Bridge according to Depth of Abutment Among Numerical Models (수치해석 모델에 따른 무조인트 교량의 교대 깊이별 거동 비교)

  • Kim, Seung-Won;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2022
  • This study investigates the behavior of a jointless bridge that integrates superstructure and abutment without an expansion joint. Based on the sensitivity analyses conducted in previous studies, a shell-based model was determined to be the most suitable numerical analysis model for jointless bridges due to the similarity of the model's results compared with the obtained displacement shape, which was influenced by relative errors, precision, and practical aspects. Accordingly, the behavior of a jointless bridge was analyzed at various wall depths using shell element-based and solid element models. In addition, the results of MIDAS Civil and ABAQUS analysis programs were compared. In the case of semi-integrated bridges (A and B), the displacement decreased as the wall depth increased due to the ground reaction force in Case 1 under a linear spring condition and +30℃. In the case where temperature was -30℃, the change in displacement was small because the ground reaction did not occur. As for bridge C (a fully integrated alternating bridge) and bridge D (an integrated chest wall alternating bridge), the displacement decreased as the wall depth increased at both +30 and -30℃ due to pile resistance. As for the comparison between the analysis programs used, the relative error in Case 1 was small, whereas a significant difference in Case 2 was observed. The foregoing variation is possibly due to the difference in the application of the nonlinear spring in the programs.

A Reliability Analysis considering the Second Composite Effect in the To-Box Reinforcement of Deteriorated PSC Beam Bridge (PSC Beam의 박스형 보강 시 이차합성을 고려한 신뢰성해석)

  • Han Sung-Ho;Cho Chang-Joo;Bang Myung-Seok;Shin Jae-Chul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.400-407
    • /
    • 2005
  • The reinforcing effect of modified structure of PSC beams is analyzed in this study. The PSC beams are closed by precast half panels embeding PS tendons at the bottom flange of I-bear The stiffness of box structure is larger and the PS force at half panels makes a time-dependent upward camber of superstructures. The superstructure becomes a second composite structure among 3 elements-PSC ben RC slab, PSC Panel. The time-dependent creep and shrinkage effect at PSC Panels and structural behavior is verified considering construction sequences. The optimal range of to-box reinforcing method is surveyed through reliability analysis.

  • PDF