• Title/Summary/Keyword: Bridge maintenance

Search Result 988, Processing Time 0.024 seconds

A Study on Improvement of Maintenance Strategy based on Analysis of Bridge Safety Grade (교량 안전등급 분석을 통한 유지관리전략 개선 방안 연구)

  • Hwang, Yoon-Koog;Sun, Jong-Wan;Choi, Young-Min;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.36-43
    • /
    • 2021
  • Because bridges are major national infrastructure, regular safety inspections or diagnoses for bridges have been conducted in accordance with the "Special Act on the Safety and Maintenance of Facilities." Accordingly, the condition and safety assessments of the bridge are conducted to derive the condition and safety rating, respectively. A lower result is determined to be the safety grade of the bridge. In this study, the relationship between the condition rating and safety rating, which are the core of the bridge safety grade, was analyzed by the representative superstructure types of bridges, such as RC slab, PSCI girder, Steel box girder, Rhamen, and Preflex girder, to identify the correlation status and range between each rating. A reasonable improvement direction for establishing existing maintenance policies was suggested by proposing an alternative plan to change the proper implementation cycle of the inspection and diagnosis of bridge superstructure types. As a result of the research, it is necessary to adjust the inspection and diagnosis cycle according to the superstructure type and safety grade. In addition, maintenance policies need to be improved through detailed research on more diverse bridge types in the future.

A Condition Rating Method of Bridges using an Artificial Neural Network Model (인공신경망모델을 이용한 교량의 상태평가)

  • Oh, Soon-Taek;Lee, Dong-Jun;Lee, Jae-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.71-77
    • /
    • 2010
  • It is increasing annually that the cost for bridge Maintenance Repair & Rehabilitation (MR&R) in developed countries. Based on Intelligent Technology, Bridge Management System (BMS) is developed for optimization of Life Cycle Cost (LCC) and reliability to predict long-term bridge deteriorations. However, such data are very limited amongst all the known bridge agencies, making it difficult to reliably predict future structural performances. To alleviate this problem, an Artificial Neural Network (ANN) based Backward Prediction Model (BPM) for generating missing historical condition ratings has been developed. Its reliability has been verified using existing condition ratings from the Maryland Department of Transportation, USA. The function of the BPM is to establish the correlations between the known condition ratings and such non-bridge factors as climate and traffic volumes, which can then be used to obtain the bridge condition ratings of the missing years. Since the non-bridge factors used in the BPM can influence the variation of the bridge condition ratings, well-selected non-bridge factors are critical for the BPM to function effectively based on the minimized discrepancy rate between the BPM prediction result and existing data (deck; 6.68%, superstructure; 6.61%, substructure; 7.52%). This research is on the generation of usable historical data using Artificial Intelligence techniques to reliably predict future bridge deterioration. The outcomes (Long-term Bridge deterioration Prediction) will help bridge authorities to effectively plan maintenance strategies for obtaining the maximum benefit with limited funds.

Practical Model to Estimate Road User Cost for Bridge Maintenance Strategy (교량 유지관리 전략 수립을 위한 실용적 도로이용자비용 추정 모델)

  • Park, Kyung-Hoon;Sun, Jong-Wan;Lee, Sang-Yoon;Lee, Jong-Soon;Cho, Hyo-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.131-142
    • /
    • 2007
  • The road user cost in indirect costs as well as direct costs such as the inspection/ diagnosis cost and the repair/reinforcement cost should be considered as one of the important items in the life-cycle cost-effective design and maintenance of the bridges. To estimate the road user cost, this paper formulates the road user cost as a sum of the user delay cost and the vehicle operating cost considering the detour effect. A numerical traffic simulation and a regression analysis are performed to develop a regression model due to a time delay. The proposed regression model is applied to the generation of the maintenance strategy based on the life-cycle cost and performance, and its effectiveness and applicability is investigated. The road user cost has a great influence on establishing the maintenance strategy, and the proposed regression model could be successfully utilized to estimate the road user cost of a bridge.

CWR for Young Jong Great Bridge Sourth Approach Section by ZLR (Zero Longitudinal Restraint) (종방향 활동체결구를 이용한 영종대교 남측 접속교량의 장대레일화 사례)

  • Lee Duck Young;Yang Sin Chu;Kwon Soon Sub;Kim Yong Man
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1057-1064
    • /
    • 2004
  • For New In-Cheon Airport. South Approach Section of Young long Great Bridge is to be special concerned to CWR due to substructure was already constructed former railroad bridge design specification. So we applied maintenance free system and CWR (Continuous Welded Rail) by ZLR(Zero Longitudinal Restraint) at bridge expansion joint part. This thesis generally introduce for CWR by ZLR at South Approach Section of Young long Great Bridge.

  • PDF

Probabilistic-based prediction of lifetime performance of RC bridges subject to maintenance interventions

  • Tian, Hao;Li, Fangyuan
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.499-521
    • /
    • 2016
  • In this paper, a probabilistic- and finite element-based approach to evaluate and predict the lifetime performance of reinforced concrete (RC) bridges undergoing various maintenance actions is proposed with the time-variant system reliability being utilized as a performance indicator. Depending on their structural state during the degradation process, the classical maintenance actions for RC bridges are firstly categorized into four types: Preventive type I, Preventive type II, Strengthening and Replacement. Preventive type I is used to delay the onset of steel corrosion, Preventive type II can suppress the corrosion process of reinforcing steel, Strengthening is the application of various maintenance materials to improve the structural performance and Replacement is performed to restore the individual components or overall structure to their original conditions. The quantitative influence of these maintenance types on structural performance is investigated and the respective analysis modules are written and inputted into the computer program. Accordingly, the time-variant system reliability can be calculated by the use of Monte Carlo simulations and the updated the program. Finally, an existing RC continuous bridge located in Shanghai, China, is used as an illustrative example and the lifetime structural performance with and without each of the maintenance types are discussed. It is felt that the proposed approach can be applied to various RC bridges with different structural configurations, construction methods and environmental conditions.

A Dynamic Analysis of Rotations at the center of Vehicle Running High Speed KTX Train on the PSC Box Bridges (PSC 교량 위를 고속주행 중인 KTX 전동차의 중심회전각 동적해석)

  • Oh, Soon-Tack;Lee, Dong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • A dynamic analysis is carried out to provide an evaluation method of running safety for a PSC box bridge located on the Gyung-Bu high speed railway. The numerical models of bridge and train vehicle are developed in detail with corresponding interaction system. Three dimensional skeleton element model of PSC box bridge and 38-degree-of-freedom of vehicle are adopted from the existing properties of KTX bridge and train vehicle. Analysed three direction rotations of vehicle on the bridge and ground tracks are compared for running speeds up to 500 km/h with 10 km/h constant increments. The comparison of the rotations will be an improved evaluation method of Running Safety in stead of the existing standard method.

Feasibility Verification for the Basic Shape of FRP Bridge Decks Using Optimization Algorithm (최적설계 알고리즘을 이용한 교량용 FRP바닥판의 기본 단면형상 제안)

  • Park, Ki Tae;Hwang, Yoon Koog;Lee, Young Ho;Jeong, Jin Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.93-102
    • /
    • 2007
  • A large number of FRP decks are already in service worldwide because the lighter FRP-based bridge decks are ideal for rapid construction to reduce the dead load of superstructures. And the proper design process is demanded for the effective FRP deck application. In this paper, to get the basic prototype of FRP bridge decks, the ratio of individual parameters, which compose the specification of FRP bridge decks, are determined by a finite element analysis. In addition, optimum FRP deck shapes are determined considering complex constraints and material properties of bi-directional characteristics. Upon these results, the prototype of FRP bridge decks is validated.

Analytical Fragility Curves for Bridge (교량의 해석적 손상도 곡선)

  • Lee, Jong-Heon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.155-162
    • /
    • 1999
  • This paper presents a generation of analytical fragility curves for bridge. The analytical fragility curves are constructed on the basis of nonlinear dynamic analysis. Two-parameter lognormal distribution functions are used to represent the fragility curves with the parameters estimated by the maximum likelihood method. To demonstrate the development of analytical fragility curves, two of representative bridges with a precast prestressed continuous deck in the Memphis. Tennessee area are used.

  • PDF

A Study on the Evaluation of Design Compressive Strength and Flexural Strength of the Improved Deep Corrugated Steel Plate (성능 개선된 대골형 파형강판의 설계 압축 및 휨 강도 평가에 대한 연구)

  • Sim, Jong Sung;Lee, Hyeon Gi;Kang, Tae Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.155-162
    • /
    • 2011
  • The structures that use the bridge plates are considered to have advantages such as short work term, excellent economical efficiency and low maintenance cost. Bridge plates are being widely used for water ducts and eco-corridors as replacements of reinforced concrete ducts. Bridge plates are deep and have greater pitch as compare to conventionally deep corrugated steel plate. They are expected to be increasingly used in the future. The structures that use bridge plates have two forms, such as arch type and box type. The arch type structures are designed based on the compressive strength, and the box type structures, based on the moment in the plate member. In this study, the ultimate strength and moment strength of the connection part of the specimens were examined by their thickness. Static and bending tests used to evaluate the performance of bridge plate. Finally, These results were used in the design process.