• 제목/요약/키워드: Bridge effect

검색결과 1,556건 처리시간 0.028초

Wake effects of an upstream bridge on aerodynamic characteristics of a downstream bridge

  • Chen, Zhenhua;Lin, Zhenyun;Tang, Haojun;Li, Yongle;Wang, Bin
    • Wind and Structures
    • /
    • 제29권6호
    • /
    • pp.417-430
    • /
    • 2019
  • To study the wake influence of an upstream bridge on the wind-resistance performance of a downstream bridge, two adjacent long-span cable-stayed bridges are taken as examples. Based on wind tunnel tests, the static aerodynamic coefficients and the dynamic response of the downstream bridge are measured in the wake of the upstream one. Considering different horizontal and vertical distances, the flutter derivatives of the downstream bridge at different angles of attack are extracted by Computational Fluid Dynamics (CFD) simulations and discussed, and the change in critical flutter state is further studied. The results show that a train passing through the downstream bridge could significantly increase the lift coefficient of the bridge which has the same direction with the gravity of the train, leading to possible vertical deformation and vibration. In the wake of the upstream bridge, the change in lift coefficient of the downstream bridge is reduced, but the dynamic response seems to be strong. The effect of aerodynamic interference on flutter stability is related to the horizontal and vertical distances between the two adjacent bridges as well as the attack angle of incoming flow. At large angles of attack, the aerodynamic condition around the downstream girder which may drive the bridge to torsional flutter instability is weakened by the wake of the upstream bridge, and the critical flutter wind speed increases at this situation.

The Effects of Performing a One-legged Bridge with Hip Abduction and Unstable Surface on Trunk and Gluteal Muscle Activation in Healthy Adults

  • Bak, Jong-Woo;Cho, Min-Kwon;Chung, Yi-Jung
    • The Journal of Korean Physical Therapy
    • /
    • 제28권3호
    • /
    • pp.205-211
    • /
    • 2016
  • Purpose: This study investigated the influence of muscle activity of the trunk and lower limb during a bridge exercise using a unstable surface and during one-legged bridge hip abduction in healthy adults. Methods: Nineteen healthy participated in this study (12 males and 7 females, aged $29.0{\pm}5.0$). The participants were instructed to perform the bridge exercises under six different conditions. Trunk and lower limb muscle activation, such as the erector spinae (ES), gluteus maximus (GM), external oblique (EO), and internal oblique (IO), was measured using surface electromyography. The six different bridge exercise conditions were conducted randomly. Data analysis was performed by using the mean scores after three trials of each condition. Results: On the ipsilateral side, muscle activity of the IO, EO, and ES during the hip abduction condition (Single-legged hip abduction bridge, Bridge with use of a ball and single-leg hip abduction, Bridge with use of a sling and single-leg hip abduction) was significantly higher than those during Unstable surface (Bridge with use of a ball, Bridge with use of a sling) and General bridging exercise (p<0.05). In the contralateral side, activities of the GM and EO during Single-legged hip abduction bridge, Bridge with use of a ball and single-leg hip abduction and Bridge with use of a sling and single-leg hip abduction was significantly higher than that during Bridge with use of a ball, Bridge with use of a sling and General bridging exercise (p<0.05). Conclusion: This study demonstrated that performing a bridge exercise with use of a sling and single-leg hip abduction had an effect on trunk and gluteal muscle activation. The findings of this study suggest that this training method can be clinically effective for unilateral training and for patients with hemiplegia.

Construction stage analysis of three-dimensional cable-stayed bridges

  • Atmaca, Barbaros;Ates, Sevket
    • Steel and Composite Structures
    • /
    • 제12권5호
    • /
    • pp.413-426
    • /
    • 2012
  • In this paper, nonlinear static analysis of three-dimensional cable stayed bridges is performed for the time dependent materials properties such as creep, shrinkage and aging of concrete and relaxation of cable. Manavgat Cable-Stayed Bridge is selected as an application. The bridge located in Antalya, Turkey, was constructed with balanced cantilever construction method. Total length of the bridge is 202 m. The bridge consists of one $\ddot{e}$ shape steel tower. The tower is at the middle of the bridge span. The construction stages and 3D finite element model of bridge are modeled with SAP2000. Large displacement occurs in these types of bridges so geometric nonlinearity is taken into consideration in the analysis by using P-Delta plus large displacement criterion. The time dependent material strength and geometric variations are included in the analysis. Two different finite element analyses carried out which are evaluated with and without construction stages and results are compared with each other. As a result of these analyses, variation of internal forces such as bending moment, axial forces and shear forces for bridge tower and displacement and bending moment for bridge deck are given with detailed. It is seen that construction stage analysis has a remarkable effect on the structural behavior of the bridge.

Dynamic Behaviors of Skewed Bridge with PSC Girders Wrapped by Steel Plate

  • Rhee, In-Kyu;Kim, Lee-Hyeon;Kim, Hyun-Min;Lee, Joo-Beom
    • International Journal of Railway
    • /
    • 제3권3호
    • /
    • pp.83-89
    • /
    • 2010
  • This paper attempts to extract the fundamental dynamic properties, i.e. natural frequencies, damping ratios of the 48 m-long, $20^{\circ}$ skewed real bridge with PSC girders wrapped by a steel plate. The forced vibration test is achieved by mounting 12 Hz-capacity of artificial oscillator on the top of bridge deck. The acceleration histories at the 9 different locations of deck surface are recorded using accelerometors. From this full-scaled vibration test, the two possible resonance frequencies are detected at 2.38 Hz and 9.86 Hz of the skewed bridge deck by sweeping a beating frequency up to 12 Hz. The absolute acceleration/energy exhibits much higher in case of higher-order twist mode, 9.86 Hz due to the skewness of bridge deck which leads asymmetric situation of vibration. This implies the test bridge is under swinging vertically in fundamental flexure mode while the bridge is also flickered up and down laterally at 9.86 Hz. This is probably by asymmetric geometry of skewed deck. A detailed 3D beam-shell bridge models using finite elements are performed under a series of train loads for modal dynamic analyses. Thereby, the effect of skewness is examined to clarify the lateral flickering caused by asymmetrical geometry of bridge deck.

  • PDF

젊은 성인의 교각운동 시 고관절 내전근 동시수축이 체간근육의 활성도에 미치는 영향 (Effect of Hip Adductor Co-contraction on Trunk Muscle Activation during Bridge Exercise in Healthy Young Individuals)

  • 나선왕;오덕원;박현주
    • 대한물리의학회지
    • /
    • 제7권3호
    • /
    • pp.275-282
    • /
    • 2012
  • Purpose : Bridge exercise has been commonly used in clinical rehabilitation settings to improve trunk control, and hip adductor muscles were a related muscle that may affect trunk muscle activation. The aim of this study was to investigate whether the co-contraction of hip adductor muscles may affect trunk muscle activation during bridge exercises. Methods : Thirty-eight healthy young subjects (19 men and 19 women) performed bridge exercises (with and without hip adduction movement). Surface electromyography (EMG) data were collected from the dominant-side internal oblique (IO), rectus abdominis (RA), multifidus (MF) and erect spine (ES) during bridge exercises to compare trunk muscles activation patterns. Result : The EMG activities of IO and RA appeared to be significantly higher during bridge exercise with hip adductor co-contraction than during bridge exercise alone (p<.01), but there were no significant differences in those of MF and ES. Furthermore, there were significant differences in the IO:RA EMG ratio during bridge exercise with hip adductor co-contraction (p<.05). Conclusion : These findings suggest that integration of hip adduction during bridge exercise may be beneficial in increasing deep muscles' activity for trunk stabilization.

Variability of measured modal frequencies of a cable-stayed bridge under different wind conditions

  • Ni, Y.Q.;Ko, J.M.;Hua, X.G.;Zhou, H.F.
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.341-356
    • /
    • 2007
  • A good understanding of normal modal variability of civil structures due to varying environmental conditions such as temperature and wind is important for reliable performance of vibration-based damage detection methods. This paper addresses the quantification of wind-induced modal variability of a cable-stayed bridge making use of one-year monitoring data. In order to discriminate the wind-induced modal variability from the temperature-induced modal variability, the one-year monitoring data are divided into two sets: the first set includes the data obtained under weak wind conditions (hourly-average wind speed less than 2 m/s) during all four seasons, and the second set includes the data obtained under both weak and strong (typhoon) wind conditions during the summer only. The measured modal frequencies and temperatures of the bridge obtained from the first set of data are used to formulate temperature-frequency correlation models by means of artificial neural network technique. Before the second set of data is utilized to quantify the wind-induced modal variability, the effect of temperature on the measured modal frequencies is first eliminated by normalizing these modal frequencies to a reference temperature with the use of the temperature-frequency correlation models. Then the wind-induced modal variability is quantitatively evaluated by correlating the normalized modal frequencies for each mode with the wind speed measurement data. It is revealed that in contrast to the dependence of modal frequencies on temperature, there is no explicit correlation between the modal frequencies and wind intensity. For most of the measured modes, the modal frequencies exhibit a slightly increasing trend with the increase of wind speed in statistical sense. The relative variation of the modal frequencies arising from wind effect (with the maximum hourly-average wind speed up to 17.6 m/s) is estimated to range from 1.61% to 7.87% for the measured 8 modes of the bridge, being notably less than the modal variability caused by temperature effect.

철근콘크리트 교각의 비탄성 거동에 미치는 크기효과에 관한 해석적 연구 (Analytical Study on the Size Effect Influencing Inelastic Behavior of Reinforced Concrete Bridge Piers)

  • 김태훈;김운학;신현목
    • 한국지진공학회논문집
    • /
    • 제6권1호
    • /
    • pp.23-31
    • /
    • 2002
  • 이 연구는 철근콘크리트 교각의 비탄성 거동에 미치는 크기효과를 파악하는데 그 목적이 있다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 이에 대한 콘크리트의 균열모델로서는 분산균열모델을 사용하였다. 두께가 서로 다른 부재간의 접합부에서 단면강성이 급변하기 때문에 생기는 국소적인 불연속변형을 고려하기 위한 경계면요소를 도입하였다. 또한, 같은 변위진폭에 있어서의 하중재하 회수에 의한 효과를 고려하였다. 철근콘크리트 교각의 비탄성 거동에 미치는 크기효과를 규명하기 위해서 실제 규모의 교각과 1/4 축소모델의 거동을 비교, 분석하였다.

Effect of excitation type on dynamic system parameters of a reinforced concrete bridge

  • Wahab, M.M. Abdel;De Roeck, G.
    • Structural Engineering and Mechanics
    • /
    • 제7권4호
    • /
    • pp.387-400
    • /
    • 1999
  • Damage detection in civil engineering structures using the change in dynamic system parameters has gained a lot of scientific interest during the last decade. By repeating a dynamic test on a structure after a certain time of use, the change in modal parameters can be used to quantify and qualify damages. To be able to use the modal parameters confidentially for damage evaluation, the effect of other parameters such as excitation type, ambient conditions,... should be considered. In this paper, the influence of excitation type on the dynamic system parameters of a highway prestressed concrete bridge is investigated. The bridge, B13, lies between the villages Vilvoorde and Melsbroek and crosses the highway E19 between Brussels and Antwerpen in Belgium. A drop weight and ambient vibration are used to excite the bridge and the response at selected points is recorded. A finite element model is constructed to support and verify the dynamic measurements. It is found that the difference between the natural frequencies measured using impact weight and ambient vibration is in general less than 1%.

강지진시 인접교량간의 충돌 매커니즘과 충격 저감 효과 (Pounding Mechanism and Mitigation Effect of Pounding between Adjacent Decks during Strong Earthquake)

  • 권영록;김진우;최광규
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.63-69
    • /
    • 2006
  • An isolated bridge using a laminated rubber bearing provides an elastic support of continuous span and prevents the transmission of excessive seismic force from the substructure of the bridge, which uses a metal bearing, as this permits a relative displacement between the super-and substructure. Hawever, this kind of bridge is caused long periodic, as a result of enlargingtotal thickness of the rubber, since it corresponds to temperature change and increases the horizontal displacement of the superstructure. This paper uses a numerical study to describe the pounding problem between adjacent decks when subjected to a strong earthquake. Furthermore, numerical results are clarified for the buffer rubber used to mitigate the pounding force between adjacent decks.

Inelastic seismic analysis of RC bridge piers including flexure-shear-axial interaction

  • Lee, Do Hyung;Elnashai, Amr S.
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.241-260
    • /
    • 2002
  • The effect of shear coupled with axial force variation on the inelastic seismic behaviour of reinforced concrete bridge piers is investigated in this paper. For this purpose, a hysteretic axial-shear interaction model was developed and implemented in a nonlinear finite element analysis program. Thus, flexure-shear-axial interaction is simulated under variable amplitude reversed actions. Comparative studies for shear-dominated reinforced concrete columns indicated that a conventional FE model based on flexure-axial interaction only gave wholly inadequate results and was therefore incapable of predicting the behaviour of such members. Analysis of a reinforced concrete bridge damaged during the Northridge (California 1994) earthquake demonstrated the importance of shear modelling. The contribution of shear deformation to total displacement was considerable, leading to increased ductility demand. Moreover, the effect of shear with axial force variation can significantly affect strength, stiffness and energy dissipation capacity of reinforced concrete members. It is concluded that flexure-shear-axial interaction should be taken into account in assessing the behaviour of reinforced concrete bridge columns, especially in the presence of high vertical ground motion.