A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.
Park, Se-Hyun;Jung, Dae-Sung;Seo, Jin-Sook;Kim, Tae-Hyeong
Journal of the Korea institute for structural maintenance and inspection
/
v.25
no.6
/
pp.1-11
/
2021
As the aging of large domestic SOC facilities accelerates, facility maintenance is also changing from safety evaluation based on the current condition to performance-oriented preventive and preemptive maintenance based on the prediction of the level of future obsolescence. In particular, in the case of bridges, class 1 and 2 bridges are systematically managed along with many studies, but for small and medium-sized class 3 bridges there is no collection and utilization of historical data presenting performance degradation during their service life. Therefore, in this study, 3D model-based demonstration DB system was designed and developed to intuitively check the damage change rate at the damage location by registering the maintenance history by life cycle for each member's exterior damage in the 3D bridge object and to enable API-based comprehensive performance evaluation.
In this study, experimental vibration tests are performed on a real full-scale railway steel plate girder bridge, which resides in open-space environments. Using experimental modal analysis techniques, the modal parameters of the railway steel plate girder bridge yielded by the modal testing of the impact hammer are compared and investigated with the natural frequencies and mode shapes obtained by finite element analysis. This work focuses on the application of model updating techniques to measured experimental data and output-only data from an analytical vibration study that takes into account various geometric and material properties of the bridge members. A finite element model of the railway bridge structure is used to verify the modal experimental results. It is subsequently updated using the corresponding modal identification technique. The basic database is provided to evaluate damage, which can be determined based on the changes in the element properties, resulting from the process of updating the finite element model benchmark and experimental data.
Shim, Chang-Su;Jeon, Chi Ho;Kang, Hwi Rang;Dang, Ngoc Son;Lon, Sokanya
Journal of KIBIM
/
v.8
no.4
/
pp.13-22
/
2018
Future performance prediction of bridges is challenging task for structural engineers. Well-organized information from design, construction and operation stages is essential for the assessment of structures. Digital twin model is a new concept to realize more reliable data platform for management of infrastructures. Damage history including degradation of material, cracking, corrosion, etc. needs to be accumulated in the digital model. The digital model is linked to the analysis model for the assessment of structural performance considering changed mechanical properties of structural components. In this paper, initial definition digital twin model of a PSC-I girder bridge is proposed.
Altunisik, Ahmet Can;Bayraktar, Alemdar;Ozdemir, Hasan
Smart Structures and Systems
/
v.10
no.2
/
pp.131-154
/
2012
In this paper, it is aimed to determine the seismic behaviour of highway bridges by nondestructive testing using ambient vibration measurements. Eynel Highway Bridge which has arch type structural system with a total length of 216 m and located in the Ayvaclk county of Samsun, Turkey is selected as an application. The bridge connects the villages which are separated with Suat U$\breve{g}$urlu Dam Lake. A three dimensional finite element model is first established for a highway bridge using project drawings and an analytical modal analysis is then performed to generate natural frequencies and mode shapes in the three orthogonal directions. The ambient vibration measurements are carried out on the bridge deck under natural excitation such as traffic, human walking and wind loads using Operational Modal Analysis. Sensitive seismic accelerometers are used to collect signals obtained from the experimental tests. To obtain experimental dynamic characteristics, two output-only system identification techniques are employed namely, Enhanced Frequency Domain Decomposition technique in the frequency domain and Stochastic Subspace Identification technique in time domain. Analytical and experimental dynamic characteristic are compared with each other and finite element model of the bridge is updated by changing of boundary conditions to reduce the differences between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of highway bridges. After finite element model updating, maximum differences between the natural frequencies are reduced averagely from 23% to 3%. The updated finite element model reflects the dynamic characteristics of the bridge better, and it can be used to predict the dynamic response under complex external forces. It is also helpful for further damage identification and health condition monitoring. Analytical model of the bridge before and after model updating is analyzed using 1992 Erzincan earthquake record to determine the seismic behaviour. It can be seen from the analysis results that displacements increase by the height of bridge columns and along to middle point of the deck and main arches. Bending moments have an increasing trend along to first and last 50 m and have a decreasing trend long to the middle of the main arches.
Jiajia, Hao;Xinqun, Zhu;Yang, Yu;Chunwei, Zhang;Jianchun, Li
Smart Structures and Systems
/
v.30
no.6
/
pp.673-686
/
2022
Deep learning algorithms for Structural Health Monitoring (SHM) have been extracting the interest of researchers and engineers. These algorithms commonly used loss functions and evaluation indices like the mean square error (MSE) which were not originally designed for SHM problems. An updated loss function which was specifically constructed for deep-learning-based structural damage detection problems has been proposed in this study. By tuning the coefficients of the loss function, the weights for damage localization and quantification can be adapted to the real situation and the deep learning network can avoid unnecessary iterations on damage localization and focus on the damage severity identification. To prove efficiency of the proposed method, structural damage detection using convolutional neural networks (CNNs) was conducted on a truss bridge model. Results showed that the validation curve with the updated loss function converged faster than the traditional MSE. Data augmentation was conducted to improve the anti-noise ability of the proposed method. For reducing the training time, the normalized modal strain energy change (NMSEC) was extracted, and the principal component analysis (PCA) was adopted for dimension reduction. The results showed that the training time was reduced by 90% and the damage identification accuracy could also have a slight increase. Furthermore, the effect of different modes and elements on the training dataset was also analyzed. The proposed method could greatly improve the performance for structural damage detection on both the training time and detection accuracy.
In this study, the seismic performance of skewed highway bridges has been assessed by using fragility function methodology. Incremental Dynamic Analysis (IDA) has been used to prepare complete information about the different damage states of a 30 degree skewed highway bridge. A three dimensional model of a skewed highway bridge is presented and incremental dynamic analysis has been applied. The details of the full nonlinear procedures have also been presented. Different spectral intensity measures are studied and the effects of the period on the fragility curves are shown in different figures. The efficiency, practicality and proficiency of these different spectral intensity measures are compared. A suite of 20 earthquake ground motions are considered for nonlinear time history analysis. It has been shown that, considering different intensity measures (IM) leads us to overestimate or low estimate the damage probability which has been discussed completely.
The truss based steel bridge structures usually consists of gusset plates which lose their load carrying capacity and rigidity under the effect of repeated and dynamics loads. This paper is focused on modeling the nonlinear material behavior of the gusset plates of the Truss Based Bridges subjected to dynamics loads. The nonlinear behavior of material is characterized by a damage coupled elsto-plastic material models. A truss bridge finite element model is established in Abaqus with the details of the gusset plates and their connections. The nonlinear finite element analyses are performed to calculate stress and strain states in the gusset plates under different loading conditions. The study indicates that damage initiation occurred in the plastic deformation localized region of the gusset plates where all, diagonal, horizontal and vertical, truss member met and are critical for shear type of failure due tension and compression interaction. These findings are agreed with the analytical and experimental results obtained for the stress distribution of this kind gusset plate.
Traditional approaches for structural health monitoring (SHM) seldom take ambient uncertainty (temperature, humidity, ambient vibration) into consideration, while their impacts on structural responses are substantial, leading to a possibility of raising false alarms. A few predictors model-based approaches deal with these uncertainties through complex numerical models running online, rendering the SHM approach to be compute-intensive, slow, and sometimes not practical. Also, with model-based approaches, the imperative need for a precise understanding of the structure often poses a problem for not so well understood complex systems. The present study employs a data-based approach coupled with Empirical mode decomposition (EMD) to correlate recorded response time histories under varying temperature conditions to corresponding damage scenarios. EMD decomposes the response signal into a finite set of intrinsic mode functions (IMFs). A two-dimensional Convolutional Neural Network (2DCNN) is further trained to associate these IMFs to the respective damage cases. The use of IMFs in place of raw signals helps to reduce the impact of sensor noise while preserving the essential spatio-temporal information less-sensitive to thermal effects and thereby stands as a better damage-sensitive feature than the raw signal itself. The proposed algorithm is numerically tested on a single span bridge under varying temperature conditions for different damage severities. The dynamic strain is recorded as the response since they are frame-invariant and cheaper to install. The proposed algorithm has been observed to be damage sensitive as well as sufficiently robust against measurement noise.
Journal of the Earthquake Engineering Society of Korea
/
v.15
no.4
/
pp.13-21
/
2011
Seismic structure pounding between adjacent superstructures may induce the destruction of pier and bridge superstructures and cause local damage that leads to the collapse of the whole bridge system. The pounding problem is related to the expansion of joints, gap distance and seismic response of the abutments. In this research, methods of the contact element approach, the linear spring model, the Kelvin-Voigt model and the Hertz model were studied to analyse the pounding characteristics. The shaking table test for a model specimen such as a bridge superstructure with elastomeric bearings was performed to evaluate the contact element approach methods. Relationships between the time history response from the numerical analysis results and the measured response from the shaking table test are compared. The experimental results were not well matched with the numerical analysis results using the existing pounding stiffness models. Therefore, in this study, coefficients are proposed to calculate the appropriate pounding stiffness ratio.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.