• Title/Summary/Keyword: Bridge Road Runoff

Search Result 6, Processing Time 0.019 seconds

Water Quality and Particle Size Distributions of Bridge Road Runoff in Storm Event (강우시 교량도로 유출수 수질 및 입경분포)

  • Cho, Yong-Jin;Lee, Jun-Ho;Bang, Ki-Woong;Choi, Chang-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1353-1359
    • /
    • 2007
  • Water quality constituents, and particle size distributions were characterized in urban bridge road runoff, Bridge road runoff contains significant loads of micro-particles, heavy metals and organic constituents. Bridge road runoff was monitored on four sites of four and six lanes bridge road areas along with traffic volume. A total seven storm events were monitored to characterize the bridge road runoff. The quantity of road runoff and quality constituents, including chemical oxygen demand(COD), suspended solids(SS), total nitrogen(T-N), ortho-phosphorus$(PO_4-P)$, total phosphorus(T-P), and particle size distribution were analyzed. The results indicate that the concentrations of SS, COD, T-N and T-P ranges were $35\sim2,390$ mg/L, $40\sim1,274$ mg/L, $0.03\sim21.25$ mg/L, and $0.05\sim4.58$ mg/L, respectively. And the results showed that the mean range of particle size and $D_{90}$ for bridge road runoff were $4.75\sim14.05{\mu}m$ and $17.33\sim58.15{\mu}m$, respectively.

Characteristics of Non-point Pollutants from the Road Runoff (2): Heavy Metals and Pathogens (도로노면 유출수의 비점오염원 배출 특성(2): 중금속 및 병원성 미생물)

  • Park, Sangwoo;Oh, Jeill;Choi, Younghwa;Kim, Jonghwa;Ha, Jaewon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.235-242
    • /
    • 2007
  • Road runoff water includes various heavy metals (zinc, Zn; lead, Pb; copper, Cu; chrome, Cr; cadmium, Cd; etc.) and pathogens (E-coli and coliform). Since these pollutants are significantly harmful to human beings and have negative impact on water streams, numerous studies have been conducted to determine the characterization of these non-point pollutants from road runoff water. However, since these non-point pollutant concentrations vary depending on road traffic, road construction, and road maintenance, measurement of pollutant loadings in different site is necessary to estimate the effect of road runoff water on drinking water source. The objective of this study was to examine the quality of road runoff water from a city bridge in Seoul, Korea. This study was conducted for two years to assess annual discharge pollution loads. In this study, five key heavy metals (Zn, Pb, Cu, Cr, and Cd) and two pathogens (E-coli and coliform) were measured at 18 different events. The pollutant load mass transported was always higher than the corresponding runoff volume for Zn, Cu, and Cd, while Pb and Cr showed similar values between the load mass transported and the corresponding runoff volume. The event mean concentrations were Zn (0.908 mg/L), Pb (0.092 mg/L), Cu (0.141 mg/L), Cr (0.023 mg/L), and Cd (0.006 mg/L). Like Zn, Cu, and Cd, E-coli and coliform values (relatively high in Summer and Fall) are higher at the beginning of each event and decrease afterwards.

Characteristics of Non-point Pollutants from the Road Runoff (1): Water Quality (도로노면 유출수의 비점오염원 배출 특성(1): 기본 수질 항목)

  • Park, Sangwoo;Oh, Jeill;Choi, Younghwa;Seo, Jeongwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.225-233
    • /
    • 2007
  • Road runoff water is one of the non-point sources (NPSs) of pollution negatively influencing drinking water source. Numerous road runoff NPS waters have been studied for over the last decade. However, the sources of pollution can be conditional, seasonal, or accidental. Therefore, measurement of pollutant loadings in different site is necessary to estimate the effect of road runoff water. The objective of this study was to examine the quality of road runoff water from a city bridge in Seoul, Korea. This study was conducted for two years to assess annual discharge pollution loads. In this study, key water quality parameters including chemical oxygen demand ($COD_{Cr}$), biochemcial oxygen demand ($BOD_5$), total nitrogen (T-N), total phosphorus (T-P), and suspended solid (SS) were measured at 18 different events. The results showed that typically the pollutant concentrations are higher at the beginning of each event and decrease afterwards. The first 20% of the volume of the runoff from each event is transporting 46% ($COD_{Cr}$), 48% ($BOD_5$), 50% (T-N), 34% (T-P), 30% (SS), respectively. The event mean concentrations (EMCs) were $COD_{Cr}$ (199 mg/L), $BOD_5$ (41.2 mg/L), T-N (7.97 mg/L), T-P (0.42 mg/L) and SS (113 mg/L). Although the results were consistent with the previous study (Barbosa and Hvitved-Jacobsen, 1999), $COD_{Cr}$, $BOD_5$, T-N exhibit a stronger first flush effect compared to the other contaminants.

Heavy Metal Contamination in Roadside Sediments within the Watershed of the Hoidong Reservoir in Busan City (부산시 회동저수지 집수분지 내 주요 도로변 퇴적물의 중금속 오염 평가)

  • Youm Seung-Jun;Lee Pyeong-Koo;Yeon Kyu-Hun;Kang Min-Ju
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.247-260
    • /
    • 2005
  • Extractable concentrations (0.1 N & 1.0 N HCI) of heavy metals in roadside sediments are lower than guidelines for soil recommended by Ministry of Environment. Heavy traffic areas (such as No. 7 national road) show high contents of heavy metals, especially, at curved areas, gully pot, crackdown areas on overspeed, pedestrian crossing etc. Fine fractions $(<63\;{\mu}m)$ of roadside sediments have the highest concentrations of heavy metals, but mass loadings of heavy metal are determined by coarse fractions $(>100{\mu}m)$, due to washing out of fine fraction sediment by runoff water. Proper treatment facilities are needed to control the inflow of fine roadside sediments from No. 7 national road and bridge such as Hanmul bridge.

Determination of Pollutant EMCs and Loadings of Runoff in Paved Areas (포장지역내 강우유출수의 EMCs 및 부하량 산정)

  • Gil, Kyung-Ik;Wee, Seung-Kyung;Park, Moo-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.119-122
    • /
    • 2008
  • The paved area like a road or bridge where having high impermeable rates were accumulated various non-point sources(NPS) by passing vehicles during dry season periods. They are flowed in the river continuous when it rains and could negative impact on environment. Therefore, this study monitoring NPS for two years and determinating for each pollutant EMCs and mass loading. The result shows that the EMC ranges are 11.60$\sim$230.90 mg/L for TSS, 4.58$\sim$31.90 mg/L for BOD, 1.86$\sim$9.20 mg/L for TN and 0.14$\sim$1.55 mg/L for TP. Also, the ranges of washed-off mass loading are determined to 0.78$\sim$18.01 kg/day for TSS, 0.47$\sim$1.17 kg/day for BOD, 0.00$\sim$0.01 kg/day for Pb and 0.01$\sim$0.06 kg/day for Zn.

A Study on Development of Management Targets and Evaluation of Target Achievement for Non-point Source Pollution Management in Saemangeum Watershed (새만금 비점오염원 관리지역에서의 목표설정 및 달성도 평가방법론 연구)

  • Kim, Eun-Jung;Park, Bae-Kyung;Kim, Yong-Seok;Rhew, Doug-Hee;Jung, Kwang-Wook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.480-491
    • /
    • 2015
  • In this study, methods using LDC (Load Duration Curve) and watershed model were suggested to develope management targets and evaluate target achievement for non-point source pollution management considering watershed and runoff characteristics and possibility for achievement of target. These methods were applied for Saemangeum watershed which was designated as nonpoint source pollution management area recently. Flow duration interval of 5 to 40% was selected as flow range for management considering runoff characteristics and TP was selected as indicator for management. Management targets were developed based on scenarios for non-point source pollutant reduction of management priority areas using LDC method and HSPF model which was calibrated using 4 years data (2009~2012). In the scenario of LID, road sweeping and 50% reduction in CSOs and untreated sewage at Jeonju A20 and 30% reduction in fertilizer and 50% in livestock NPS at Mankyung C03, Dongjin A14 and KobuA14, management targets for Mangyung bridge, Dongjin bridge, Jeonju stream and Gunpo bridge were developed as TP 0.38, 0.18, 0.64 and 0.16 mg/L respectively. When TP loads at the target stations were assumed to have been reduced by a certain percentage (10%), management targets for those target stations were developed as TP 0.35, 0.17, 0.60 and 0.15 mg/L respectively. The result of this study is expected to be used as reference material for management master plan, implementation plan and implementation assessment for non-point source management area.