• 제목/요약/키워드: Bridge Reliability

검색결과 447건 처리시간 0.025초

강거더 교량의 신뢰성해석을 위한 저항모델 개발 (Resistance Model for Reliability Analysis of Existing Steel Girder Bridges)

  • 엄준식
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권4호
    • /
    • pp.241-252
    • /
    • 2013
  • Because of financial and safety concerns, there are needs for more accurate prediction of bridge behavior. Underestimation of the bridge load carrying capacity can have serious economic consequences, as deficient bridges must be repaired or rehabilitated. Therefore, the knowledge of the actual bridge behavior under live load may lead to a more realistic calculation of the load carrying capacity and eventually this may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Seventeen existing bridges were tested under truck load to confirm their adequacy of reliability. The actual response of existing bridge structures under live load is measured. Reliability analysis is performed on the selected representative bridges designed in accordance with AASHTO codes for bridge component (girder). Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. Therefore, the actual response of bridge structures, including unintentional composite action, partial fixity of supports, and contribution of nonstructural members are considered in the bridge reliability evaluation. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased by reducing uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.

Reliability-based condition assessment of a deteriorated concrete bridge

  • Ghodoosi, Farzad;Bagchi, Ashutosh;Zayed, Tarek;Zaki, Adel R.
    • Structural Monitoring and Maintenance
    • /
    • 제1권4호
    • /
    • pp.357-369
    • /
    • 2014
  • In the existing bridge management systems, assessment of the structural behavior is based on the results of visual inspections in which corresponding condition states are assigned to individual elements. In this process, limited attention is given to the correlation between bridge elements from structural perspective. Also, the uncertainty of parameters which affect the structural capacity is ignored. A system reliability-based assessment model is potentially an appropriate replacement for the existing procedures. The aim of this research is to evaluate the system reliability of existing conventional Steel-Reinforced bridge decks over time. The developed method utilizes the reliability theory and evaluates the structural safety for such bridges based on their failure mechanisms. System reliability analysis has been applied to simply-supported concrete bridge superstructures designed according to the Canadian Highway Bridge Design Code (CHBDC-S6) and the deterioration pattern is achieved based on the reliability estimates. Finally, the bridge condition index of an old existing bridge in Montreal has been estimated using the developed deterioration pattern. The results obtained from the developed reliability-based deterioration model and from the evaluation done by bridge engineers have been found to be in accordance.

Dominant failure modes identification and structural system reliability analysis for a long-span arch bridge

  • Gao, Xin;Li, Shunlong
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.799-808
    • /
    • 2017
  • Failure of a redundant long-span bridge is often described by innumerable failure modes, which make the structural system reliability analysis become a computationally intractable work. In this paper, an innovative procedure is proposed to efficiently identify the dominant failure modes and quantify the structural reliability for a long-span bridge system. The procedure is programmed by ANSYS and MATLAB. Considering the correlation between failure paths, a new branch and bound operation criteria is applied to the traditional stage critical strength branch and bound algorithm. Computational effort can be saved by ignoring the redundant failure paths as early as possible. The reliability of dominant failure mode is computed by FORM, since the limit state function of failure mode can be expressed by the final stage critical strength. PNET method and FORM for system are suggested to be the suitable calculation method for the bridge system reliability. By applying the procedure to a CFST arch bridge, the proposed method is demonstrated suitable to the system reliability analysis for long-span bridge structure.

차량 통행하중에 대한 사장교의 신뢰성에 기초한 안전도 및 내하력평가 (Reliability Based Assessment of Safety and Load Carrying Capacity of Cable-Stayed Bridge under Vehicle Traffic Loads)

  • 조효남;이승재;임종권
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.199-208
    • /
    • 1994
  • One of the main objectives of the study is to propose a practical but realistic limit state model considering combined effect of axial and bending load for reliability analysis and safety assessment of cable-stayed bridge under vehicle traffic loads. This paper is intended to propose a new approach for the evaluation of reserved load carrying capacity of cable-stayed bridge under vehicle traffic loads in terms of equivalent strength, which may be defined as a bridge strength corresponding to the reliability index of the bridge. This can be derived from an inverse process based on the concept of FOSM form of reliability index. AFOSM and IST methods are used for the reliability analysis of the proposed models. The proposed reliability model and methods are applied to the safety assessment of Jindo Bridge which is one of major two cable-stayed bridges in Korea.

  • PDF

Serviceability reliability analysis of cable-stayed bridges

  • Cheng, Jin;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제20권6호
    • /
    • pp.609-630
    • /
    • 2005
  • A reliability analysis method is proposed in this paper through a combination of the advantages of the response surface method (RSM), finite element method (FEM), first order reliability method (FORM) and the importance sampling updating method. The accuracy and efficiency of the method is demonstrated through several numerical examples. Then the method is used to estimate the serviceability reliability of cable-stayed bridges. Effects of geometric nonlinearity, randomness in loading, material, and geometry are considered. The example cable-stayed bridge is the Second Nanjing Bridge with a main span length of 628 m built in China. The results show that the cable sag that is part of the geometric nonlinearities of cable-stayed bridges has a major effect on the reliability of cable-stayed bridge. Finally, the most influential random variables on the reliability of cable-stayed bridges are identified by using a sensitivity analysis.

RELIABILITY-BASED COMPONENT DETERIORATION MODEL FOR BRIDGE LIFE-CYCLE COST ANALYSIS

  • Rong-yau Huang;Wen-zheng Hsu
    • 국제학술발표논문집
    • /
    • The 2th International Conference on Construction Engineering and Project Management
    • /
    • pp.386-397
    • /
    • 2007
  • One major development in bridge life cycle cost analysis (LCCA) in recent years is to develop deterioration model for bridge components so that the times of repair/replacement throughout a component's life span can be properly determined. Taiwan also developed her own bridge LCCA model in 2003, integrating with the bridge inspection database in the local bridge management system (T-BMS). Under the framework of the local LCCA model, this study employs the reliability method in developing a deterioration model of bridge components. A component deteriorates through time in its reliability, which represents the probability of a component's condition index exceeds a user specified threshold. Model assumptions and rationale are described in the paper. The steps for applying the developed model are explained in detail. Results and findings are reported.

  • PDF

LRFD 설계를 위한 교대의 신뢰성 해석 모델 (Reliability Analysis Modeling for LRFD Design of Bridge Abutments)

  • 엄준식
    • 한국지반공학회논문집
    • /
    • 제30권8호
    • /
    • pp.5-11
    • /
    • 2014
  • 본 연구의 목적은 신뢰성해석을 통해 교량의 하부구조인 교대에 대해 주요설계변수와 신뢰성계수의 관계를 정립하여 하중저항계수설계를 위한 신뢰성해석방법을 개발하는 것이다. 하중조건으로는 사하중, 연직토압 및 수평토압, 상재하중, 그리고 통행차량에 의한 활하중을 고려하였다. 고려한 하중에 대해 지반의 허용지지력, 전도, 활동 등을 반영하는 한계상태함수를 정의하여 신뢰성 해석을 몬테-카를로 시뮬레이션을 이용하여 수행하였다. 신뢰성 해석 결과 신뢰성지수에 가장 큰 영향을 미치는 인자는 내부마찰각이었으며 민감도해석 결과 신뢰성 지수는 저항계수와 수평토압의 변화에 따라 민감하게 변화하는 것을 알 수 있었다.

Reliability considerations in bridge pier scouring

  • Muzzammil, M.;Siddiqui, N.A.;Siddiqui, A.F.
    • Structural Engineering and Mechanics
    • /
    • 제28권1호
    • /
    • pp.1-18
    • /
    • 2008
  • The conventional design of bridge piers against scour uses scour equations which involve number of uncertain flow, sediments and structural parameters. The inherent high uncertainties in these parameters suggest that the reliability of piers must be assessed to ensure desirable safety of bridges against scour. In the present study, a procedure for the reliability assessment of bridge piers, installed in main and flood channels, against scour has been presented. To study the influence of various random variables on piers' reliability sensitivity analysis has been carried out. To incorporate the reliability in the evaluation of safety factor, a simplified relationship between safety factor and reliability index has been proposed. Effects of clear water (flood channel) and live bed scour (main channel) are highlighted on pier reliability. In addition to these, an attempt has also been made to explain the failure of Black mount bridge of New Zealand based on its pier's reliability analysis. Some parametric studies have also been included to obtain the results of practical interest.

R.C 박스거더교의 체계신뢰성해석 및 안전도평가 (Assessment of System Reliability and Capacity-Rating of Concrete Box-Girder High-Girder Highway Bridges)

  • 조효남;이승재;임종권
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.195-200
    • /
    • 1993
  • This paper develops practical and realistic reliability models and methods for the evalusion of system reliability and system reliability-based rating of R.C box-girder bridge superstructures. The precise prediction of reserved carrying capacity of bridge as a system is extremely difficult expecially when the bridges are highly redundant and significantly deteriorated or damaged. This paper proposes a new approach for the evaluation of reserved system carrying capacity of bridges in terms of equivalent system-strength, which may be defined as a bridge system-strength corresponding to the system reliability of the bridge. This can be derived from an inverse process based on the concept of FOSM form of system reliability index. The strength limit state models for R.C box-girder bridges suggested in the paper are based on the basic bending and shear strength. and the system reliability problem of box-girder superstructure is formulated as parallel-series models obtained from the FMA(Failure Mode Approach) based on major failure mechanism or critical failure states of each girder. AFOSM and IST(Importance Sampling Technique) simulation algorithm is used for the reliability analysis of the proposed models.

  • PDF

Reliability analysis on flutter of the long-span Aizhai bridge

  • Liu, Shuqian;Cai, C.S.;Han, Yan;Li, Chunguang
    • Wind and Structures
    • /
    • 제27권3호
    • /
    • pp.175-186
    • /
    • 2018
  • With the continuous increase of span lengths, modern bridges are becoming much more flexible and more prone to flutter under wind excitations. A reasonable probabilistic flutter analysis of long-span bridges involving random and uncertain variables may have to be taken into consideration. This paper presents a method for estimating the reliability index and failure probability due to flutter, which considers the very important variables including the extreme wind velocity at bridge site, damping ratio, mathematical modeling, and flutter derivatives. The Aizhai Bridge in China is selected as an example to demonstrate the numerical procedure for the flutter reliability analysis. In the presented method, the joint probability density function of wind speed and wind direction at the deck level of the bridge is first established. Then, based on the fundamental theories of structural reliability, the reliability index and failure probability due to flutter of the Aizhai Bridge is investigated by applying the Monte Carlo method and the first order reliability method (FORM). The probabilistic flutter analysis can provide a guideline in the design of long-span bridges and the results show that the structural damping and flutter derivatives have significant effects on the flutter reliability, more accurate and reliable data of which is needed.