• Title/Summary/Keyword: Bridge Form

Search Result 402, Processing Time 0.026 seconds

Probabilistic time-dependent sensitivity analysis of HPC bridge deck exposed to chlorides

  • Ghosh, Pratanu;Konecny, Petr;Lehner, Petr;Tikalsky, Paul J.
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.305-313
    • /
    • 2017
  • A robust finite element based reinforced concrete bridge deck corrosion initiation model is applied for time-dependent probabilistic sensitivity analysis. The model is focused on uncertainties in the governing parameters that include variation of high performance concrete (HPC) diffusion coefficients, concrete cover depth, surface chloride concentration, holidays in reinforcements, coatings and critical chloride threshold level in several steel reinforcements. The corrosion initiation risk is expressed in the form of probability over intended life span of the bridge deck. Conducted study shows the time-dependent sensitivity analysis to evaluate the significance of governing parameters on chloride ingress rate, various steel reinforcement protection and the corrosion initiation likelihood. Results from this probabilistic analysis provide better insight into the effect of input parameters variation on the estimate of the corrosion initiation risk for the design of concrete structures in harsh chloride environments.

A simplified analysis of the behavior of suspension bridges under live load

  • Stavridis, Leonidas T.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.559-576
    • /
    • 2008
  • Having established the initial geometry and cable force of a typical three span suspension bridge under permanent load, the additional maximum response of the cable and the stiffening girder due to live load are determined, by means of an analytic procedure, considering the girder first hinged at its ends and then continuous through the main towers. The problem of interaction between the cable and the stiffening girder is examined taking under due consideration the second order effects, whereby, through the analogy to a fictitious tensioned beam under transverse load, a closed -form solution is achieved by means of a simple quadratic equation. It is found that the behavior of the whole system is governed by five simple dimensionless parameters which enable a quick determination of all the relevant design magnitudes of the bridge. Moreover, by introducing these parameters, a set of diagrams is presented, which enable the estimation of the influence of the geometric and loading data on the response and permit its immediate evaluation for preliminary design purposes.

Fabrication of 6, 13-bis(triisopropylsilylethynyl) (TIPS) pentacene -Nanowire Arrays Using Nano Transfer Molding

  • Oh, Hyun-S.;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.284-284
    • /
    • 2010
  • We report a fabrication of 6, 13-bis(triisopropylsilylethynyl) (TIPS) pentacene nanowires that made on Si substrates by liquid bridge-nanotransfer molding (LB-nTM) with polyurethane acrylate (PUA) mold. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid bridge between them. In liquid bridge-transfer process, the liquid layer serves as an adhesion layer to provide good conformal contact and form covalent bonding between the TIPS-pentacene nanowire and the Si substrate. The patterned TIPS-Pentacene nanowires have been investigated by Atomic force microscopy (AFM), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and electrical properties.

  • PDF

Seismic response prediction and modeling considerations for curved and skewed concrete box-girder bridges

  • Ramanathan, Karthik;Jeon, Jong-Su;Zakeri, Behzad;DesRoches, Reginald;Padgett, Jamie E.
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1153-1179
    • /
    • 2015
  • This paper focuses on presenting modeling considerations and insight into the performance of typical straight, curved, and skewed box-girder bridges in California which form the bulk of the bridge inventory in the state. Three case study bridges are chosen: Meloland Road Overpass, Northwest Connector of Interstate 10/215 Interchange, and Painter Street Overpass, having straight, curved, and skewed superstructures, respectively. The efficacy of nonlinear dynamic analysis is established by comparing the response from analytical models to the recorded strong motion data. Finally insights are provided on the component behavioral characteristics and shift in vulnerability for each of the bridge types considered.

Modelling and integrity assessment of shear connectors in precast cast-in-situ concrete bridges

  • Moyo, Pilate;Sibanda, Bongani;Beushausen, Hans
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.55-72
    • /
    • 2012
  • Precast-cast insitu concrete bridge construction is widely practiced for small to medium span structures. These bridges consist of precast pre-stressed concrete beams of various cross-sections with a cast in-situ reinforced concrete slab. The connection between the beams and the slab is via shear links often included during the manufacturing process of the beams. This form of construction is attractive as it provides for standardisation, reduced formwork and construction time. The assessment of the integrity of shear connectors in existing bridges is a major challenge. A procedure for assessment of shear connectors based on vibration testing and finite element model updating is proposed. The technique is applied successfully to a scaled model bridge model and an existing bridge structure.

Structural Behavior of Composite Liminate Bridge Deck Considering a Girder Stiffness (Girder의 강성을 고려한 복합 재료 교량 상판의 구조 거동)

  • Park, Je-Sun;Lee, Jung-Ho;Won, Chi-Moon;Shim, Do-Sik
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.107-115
    • /
    • 1998
  • Many of the bridge and building floor systems, including the girders and cross-beams, also behave a similar special orthotropic plates. Such plates are subject to the concentrate masses in the form of traffic loads, or the test equipments such as the accelerator in addition to their own masses. Analysis of such problems is usually very difficult. Most of the bridge slabs on girders have large aspect ratios. Finite difference method is used for this purpose, in this paper. The result is compared with that of the beam theory.

  • PDF

Experimental study on ultimate torsional strength of PC composite box-girder with corrugated steel webs under pure torsion

  • Ding, Yong;Jiang, Kebin;Shao, Fei;Deng, Anzhong
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.519-531
    • /
    • 2013
  • To have a better understanding of the torsional mechanism and influencing factors of PC composite box-girder with corrugated steel webs, ultimate torsional strength of four specimens under pure torsion were analyzed with Model Test Method. Monotonic pure torsion acts on specimens by eccentric concentrated loading. The experimental results show that cracks form at an angle of $45^{\circ}$ to the member's longitudinal axis in the top and bottom concrete slabs. Longitudinal reinforcement located in the center of cross section contributes little to torsional capacity of the specimens. Torsional rigidity is proportional to shape parameter ${\eta}$ of corrugation and there is an increase in yielding torque and ultimate torque of specimens as the thickness of corrugated steel webs increases.

Self-employment as Bridge Employment (자영업과 가교일자리)

  • Sung, Jaimie;Ahn, Joyup
    • Journal of Labour Economics
    • /
    • v.27 no.2
    • /
    • pp.1-27
    • /
    • 2004
  • The share of self-employment shows a downward trend until 1990 and then an upward trend since then. The upward trend is mainly due to more employers and more male self-employed, which implies that self-employment plays a significant role as an alternative form of employment. This paper examines whether self-employment can be a bridge between no work and wage work in the processes entering into or exiting labor market, and if so, what determines the choice of self-employment as a bridge, using the data from the Korea Labor and Income Panel Survey(Wave 1 to Wave 5). Empirical analysis employing the probit model shows that the older, female, the less educated, and persons with bad health are more likely to choose self-employment as a bridge in the exit process and that they are less likely to choose it as a bridge in the entry process. Business cycle has a statistically significant negative effect on its role of bridge employment in the exit process but not in the entry process. The result implies that, in the ageing society, labor market policy should consider self-employment as a better alternative than wage work for the aged.

  • PDF

Effects of ground motion frequency content on performance of isolated bridges with SSI

  • Neethu, B;Das, Diptesh;Garia, Siddharth
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.353-363
    • /
    • 2017
  • The present study considers a multi-span continuous bridge, isolated by lead rubber bearing (LRB). Dynamic soilstructure interaction (SSI) is modelled with the help of a simplified, sway-rocking model for different types of soil. It is well understood from the literature that SSI influences the structural responses and the isolator performance. However, the abovementioned effect of SSI also depends on the earthquake ground motion properties. It is very important to understand how the interaction between soil and structure varies with the earthquake ground motion characteristics but, as far as the knowledge of the authors go, no study has been carried out to investigate this effect. Therefore, the objectives of the present study are to investigate the influence of earthquake ground motion characteristics on: (a) the responses of a multi span bridge (isolated and non-isolated), (b) the performance of the isolator and, most importantly, (c) the soil-structure interaction. Statistical analyses are conducted by considering 14 earthquakes which are selected in such a way that they can be categorized into three frequency content groups according to their peak ground acceleration to peak ground velocity (PGA/PGV) ratio. Lumped mass model of the bridge is developed and time history analyses are carried out by solving the governing equations of motion in the state space form. The performance of the isolator is studied by comparing the responses of the bridge with those of the corresponding uncontrolled bridge (i.e., non-isolated bridge). On studying the effect of earthquake motions, it is observed that the earthquake ground motion characteristics affect the interaction between soil and structure in such a way that the responses decrease with increase in frequency content of the earthquake for all the types of soil considered. The reverse phenomenon is observed in case of the isolator performance where the control efficiencies increase with frequency content of earthquake.

Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling

  • Grinderslev, Christian;Lubek, Mikkel;Zhang, Zili
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.381-397
    • /
    • 2018
  • Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.