• Title/Summary/Keyword: Bridge Exercise

Search Result 94, Processing Time 0.021 seconds

Effects of Sling Bridge Exercise with Rhythmic Stabilization Technique on Trunk Muscle Endurance and Flexibility in Adolescents with Low Back Pain

  • Kim, Kyung-Yoon;Sim, Ki-Chol;Kim, Tae-Gon;Bae, Sea-Hyun;Lee, Jun-Cheol;Kim, Gi-Do
    • International Journal of Contents
    • /
    • v.9 no.4
    • /
    • pp.72-77
    • /
    • 2013
  • The purpose of this study was to examine the effects of general sling-bridge exercise (GSE) and sling-bridge exercise with rhythmic stabilization technique (SER) on trunk muscle endurance and flexibility in adolescents with low back pain (LBP). 30 adolescents who had complaints of LBP were randomly assigned to one of the two groups: the GSE group (n=15) and SER group (n=15). Subjects performed each exercise programs for 4 weeks with the aim of improving trunk muscle stability; GSE group trained general bridge exercise with sling, SER group trained rhythmic stabilization bridge exercise with sling. The static and dynamic trunk muscle endurance and flexibility were measured before and at the end of the exercise program. The static and dynamic trunk muscle endurance were significantly improved in both groups (p<.05) and the SER group showed significant difference from the GSE group after the exercise (p<.05). The trunk muscle flexibility was significantly improved in both groups (p<.05) and the SER group were significantly different from GSE group post-exercise (p<.05). The results of this study showed that sling bridge exercise with rhythmic stabilization technique may be appropriate for improving trunk muscle stability in adolescents with LBP.

The Effects of Bridge Exercise with Contraction of Hip Adductor Muscles on Thickness of Abdominal Muscles (고관절 내전근 수축을 이용한 교각운동이 복부근육의 두께에 미치는 영향)

  • Lee, Geon-Cheol;Bae, Won-Sik;Kim, Chi-Hyok
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.2
    • /
    • pp.233-242
    • /
    • 2014
  • PURPOSE: The purpose of this study was to determine the correlation between the hip adductor muscles and abdominal muscles during bridge exercise. METHOD: Participants who met the criteria for this study(n=36) were divided into the three groups. The first experimental group performed normal bridge exercises and the second group performed bridge exercises with the contraction of the hip adductor muscles and the control group didn't perform any exercise. Transversus abdominis muscle thickness was measured by ultrasound imaging with a special transducer head device, at pre exercise, after 2 weeks, 4 weeks, and 6 weeks. RESULT: Data were analyzed using repeated ANOVA with the level of significance set at ${\alpha}=.05$. Transversus abdominis muscle thickness was influenced by contraction of the hip adductor muscles during bridge exercise in people without lower back pain. Compared with normal bridge exercise, transversus abdominis muscle thickness significantly increased in thickness during bridge exercise with contraction of the hip adductor muscles(p<.05). CONCLUSION: The results from this study showed that contraction of the hip adductor muscles during bridge exercise increased change in the transversus abdominis muscle thickness. These results can be a good source to prevent low back pain due to hip adductor weakness. Therefore, inducing activation of hip adductor with abdominal stabilizing exercise is more effective in patients with low back pain.

Effects of Bridge Exercise Combined with Vibration on Abdominal Muscle Thickness (진동을 병행한 교각운동이 복부 근육 두께에 미치는 영향)

  • Jae Cheol Park;Jin Gyu Jeong
    • Journal of Korean Physical Therapy Science
    • /
    • v.30 no.3
    • /
    • pp.31-40
    • /
    • 2023
  • Background: The purpose of this study was to confirm the effect of bridge exercise combined with vibration on abdominal muscle thickness. Design: Randomized controlled trial. Methods: As study subjects, 24 adults in their 20s were classified into 12 vibration bridge exercise groups and 12 bridge exercise groups. The time was divided into before the experiment, 3 weeks after the experiment, and 6 weeks after the experiment. Two-way repeated ANOVA was used to examine changes in the muscle thickness of the external oblique, internal oblique, and transverse abdominal muscles of the trunk muscles, and the significance level was set at 0.05. If there was an interaction between time and group, post-hoc analysis was performed, and the significance level was set at 0.01. Results: There was a significant difference in the external oblique muscle in the change by period, the interaction between time and group, and the change between groups (p<0.05). There was a significant difference in the external oblique muscle in the change by period, the interaction between time and group, and the change between groups (p<0.05). Conclusion: As a result of this study, bridge exercise combined with vibration had a positive effect on the muscle thickness of the external oblique, internal oblique, and transversus abdominis muscles. It suggests the possibility of using the basic data of vibration exercise and the lumbar stabilization exercise in clinical practice.

Effects of Bridge Exercise with Trunk Rotation on Trunk Muscle Thickness in Healthy Adults (몸통 회전을 이용한 교각운동이 정상 성인의 몸통 근육 두께에 미치는 영향)

  • Kwang Duk Park;Yong Nam Kim
    • Journal of Korean Physical Therapy Science
    • /
    • v.30 no.3
    • /
    • pp.41-48
    • /
    • 2023
  • Background: This study examined the effects of the bridge exercise with trunk rotation on the thickness of body trunk muscles, including external oblique, internal oblique, and transverse abdominis in healthy male adults. Design: Randomized controlled trial Methods: Twenty-four men were evenly divided into a trunk rotation bridge exercise group and a basic bridge exercise group by drawing lots. The two groups performed the respective exercise for thirty minutes, three times a week for six weeks. repeated measure analysis of variance (ANOVA) was used after distinguishing between three different time points before the experiment, three weeks after the experiment, and six weeks after the experiment. The significance level was set at 0.05. In case an interaction between time and group existed, the paired t-test was used to examine the within-group difference. The independent-sample t-test was used to check the between-group difference. The significance level was set at 0.05. Results: All the men showed a significant change over time in their external oblique, internal oblique, and transverse abdominis muscles. An interaction between time and group was also found (p<0.05). Conclusion: The bridge exercise with trunk rotation causes a meaningful difference in the thickness of external oblique, internal oblique, and transverse abdominis muscles. Therefore, this study proposes the use of this exercise for lower-back stabilization in future research and clinical settings.

The Effect of Chest Extension Exercise and Bridge Exercise on FVC and FEV1 (가슴우리 확장운동과 교각운동이 노력성 폐활량과 1초간 노력성 날숨량에 미치는 영향)

  • Kim, Chung-Yoo;Bae, Won-Sik
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.4
    • /
    • pp.11-18
    • /
    • 2021
  • Purpose : The purpose of this study was to investigate the effect on lung capacity of healthy men and women in their twenties by performing an intervention using the chest extension exercise and the bridge exercise, which are respiratory muscle strengthening exercises. Methods : Thirty adult men and women in their 20s participated in this study. All subjects participated in the study after hearing the explanation of the purpose and method of the study, filling out a consent form. All subjects were randomly assigned to the chest extension exercise (CEE) group and the bridge exercise (BE) group of fifteen each. Each exercise was performed twice a week for 4 weeks. Lung capacity was measured by forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) using spirometry. Lung capacity was measured before and after exercise. The measured data were compared through the dependent t-test and the independent t-test. The statistical significance level was set at .05. Results : After the intervention, the CEE group showed a significant increase in FVC and FEV1 compared to before the intervention (p<.05). After the intervention, the BE group also had a significant increase in FVC and FEV1 compared to before the intervention (p<.05). However, there was no difference in FVC and FEV1 between groups before and after the intervention (p>.05). Conclusion : There was no difference between groups in lung capacity after exercise. However, both the chest extension exercise and the bridge exercise increased FVC and FEV1, which was thought to be because both exercise methods were effective in increasing lung capacity. Therefore, both chest extension exercises and bridge exercises can be effectively applied as a way to increase lung capacity.

Effects of the Symmetry of Muscle Activity by Application of Visual Feedback using Tension Sensor and Inclinometer during Bridge Exercise with Sling (슬링을 이용한 교각운동 시 장력센서와 경사계를 이용한 시각적 피드백이 근활성도에 미치는 영향)

  • Kwon, Yu-Jeong;Song, Min-Young
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.1
    • /
    • pp.133-140
    • /
    • 2021
  • Purpose: This study aimed to compare the relative muscle activity on the erector spinae, gluteus maximus, and hamstring, using a non-visual feedback bridge exercise and a visual feedback bridge exercise with a tension sensor and clinometer. Methods: Twenty-two healthy subjects participated in this study. The study subjects performed bridge exercises without visual feedback, bridge exercises using a tension sensor, and bridge exercises using an inclinometer in the supine position, and the muscle activity of the left and right erector spinae, gluteus maximus, and hamstring muscles was measured while maintaining isometric contraction during the bridge movement. Muscle activity was measured by using surface an electromyography equipment. To standardize the measured action potential of each muscle, the maximum voluntary isometric contraction was measured. The bridge exercise was repeated 3 times for 5s each. Using repeated analysis of variance, we compared the significant difference in EMG activity for each muscle between the three experiments, and all statistical processing was performed using SPSS version 26. The statistical significance level was set at α = 0.05. Results: During bridging exercises, the asymmetry of the muscle activity of the erector spinae and gluteus maximus during visual feedback guiding was lower than that during no visual feedback. However, there was no significant difference. Moreover, the asymmetry of the muscle activity of the hamstring muscles was significantly lower during tension sensor visual feedback than that during no visual feedback (p<0.05). Conclusion: These findings suggest that bridge exercise with visual feedback using a tension sensor and an inclinometer is effective in inducing symmetrical movement. When it is necessary to symmetrically adjust the weight load of both feet during the bridge exercise, it is effective to apply visual feedback using a tension sensor.

The Effect of Erector Spine and Gluteus maximus Muscle Activity on Bridging Exercise with Stabilizer Pressure Biofeedback (생체자기제어 측정 기구를 이용한 교각운동이 척추세움근과 큰볼기근의 근활성도에 미치는 영향)

  • Go, Seong-Uk;In, Tae-Sung
    • Journal of Korean Physical Therapy Science
    • /
    • v.24 no.2
    • /
    • pp.9-16
    • /
    • 2017
  • Purpose: This study was conducted in order to examine the changes of muscle activitis of erector spine muscles and Gluteus maximus during the bridge exercise with adductor muscles. Method: After attaching the EMG device to the Gluteus maximus and erector spine muscles of the 100 healthy adult males in their 20s, applying the stabilizer pressure biofeedback device between the knees, the bridge movement was carried out 10 seconds. Result: During the exercise of the bridge movement, the muscular activities in erector spine and gluteus maximus were significantly different in ralation to the simultaneous contractive adductor muscles of the bridge(p<.05). Conclusion: Thus, the bridge exercise is carried out in conjunction with the simultaneous contraction of adductor muscles that suggests that the training are more effective in erector spine and gluteus maximus activities.

Effect of One Leg Bridge Exercise with Abdominal Pressure Control on the Trunk Muscle Activation in Healthy Adults

  • Jeong, Seunghoon;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.253-258
    • /
    • 2022
  • Objective: This study aimed to determine the effect of internal abdominis pressure(normal, hollowing and bracing) on trunk muscle activity during one leg bridge exercise. Design: Cross-sectional study. Methods: Thirteen healthy adults (9 men and 4 women) were instructed to perform Internal abdominal pressure(IAP) control(Normal, Hollowing, Bracing) during one leg bridge. Electromyography (EMG) data (% Maximum Voluntary Isometric Contraction, MVIC) were recorded three times on both sides of the participant's Internal Oblique(IO), Effector Spinae(ES), and Multifidus(MF) muscles and the average value was analyzed. Results: As a result, Abdominal bracing one leg bridge (BOLB) group and Abdominal hollowing one leg bridge (HOLB) group showed significantly increased muscle activation of bilateral internal oblique, erector spinae and multifidus activation compared to the Normal one leg bridge (NOLB) group (p<0.05). Abdominal hollowing one leg bridge (HOLB) group had a significant difference in bilateral Internal oblique muscle activation in compared to the NOLB group (p<0.05). Conclusions: Bilateral internal oblique, erector spinae, and multifidus muscles activation in healthy adults at one leg bridge exercise showed greater activation at abdominal bracing. Therefore, in this study, IAP control can be used as an indicator of choice to the dysfunction with trunk muscle weakness and corrective exercise subject's situation when the goal is to activate the trunk muscles by performing one leg bridge.

Effects of Various Types of Bridge Exercise on the Walking Ability of Stroke Patients

  • Ynag, Dae-Jung;Uhm, Yo-Han
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.3
    • /
    • pp.137-145
    • /
    • 2020
  • Purpose: The purpose of this study is to examine the effect of various bridge exercises on walking ability. Method: The subjects were 30 stroke patients. They were divided into a bridge exercise group on a stable support surface (Group I), a bridge exercise group on an unstable support surface (Group II), and a bridge exercise group combined with whole body vibrations (Group III). 10 subjects were randomly assigned into each group. The subjects of this study had 30 minutes of nervous system physical therapy including gait training and strength training. In addition, each group underwent a 30 minutes session five times a week for eight weeks. Before intervention, LUKOtronic was used to measure step width and step length, time was measured with a 10 m walking test, and time and number of steps were measured with the figure 8 walking test. After the intervention, remeasured and analysis was performed for each group. Results: As a result of comparing and analyzing the change of walking ability between groups, there was a statistically significant difference. As a result of the post hoc analysis according to the change of walking ability among groups, the change of walking ability was larger in Group III than in Group I and Group II. Conclusion: Based on these results, it is confirmed that the bridge exercise combined with whole body vibration was more effective for walking ability. Based on these findings, this study proposes an effective program for elite athletes as well as stroke patients.

Comparisons of Gluteus Maximus and Hamstring Muscle Activities according to Three Different Sling Locations during Bridge Exercise with Sling in Supine Position

  • Tae-Hyeong Kim;Su-Yeon Bae;In-Cheol Jeon
    • The Journal of Korean Physical Therapy
    • /
    • v.36 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • Purpose: The study was undertaken to investigate the electromyographic activities of the gluteus maximus (GM), hamstring (HAM), and multifidus (MF) in three different sling locations during bridge exercise in the supine position. Methods: Twenty healthy male subjects participated. An electromyography device was used to measure the muscle activities of the GM, HAM, and MF muscles. Subjects were asked to perform bridge exercises with three different sling locations as follows: 1) Bridge exercise with an ankle sling; BEAS, 2) Bridge exercise with a calf sling; BECS, and 3) Bridge exercise with a knee sling; BEKS in random order. The analysis was conducted using one-way repeated ANOVA and the Bonferroni post hoc. Significance was set at α=0.01. Results: HAM muscle activity was significantly different in the three conditions (BEAS, BECS, BEKS) (adjusted p-value [padj]<0.01), and HAM muscle activity was significantly smaller during BEKS than during BEAS or BECS (padj<0.01). Muscle activity ratio (GM/HAM) during BEKS was significantly greater than muscle activity ratios during BEAS or BECS (padj<0.01). Conclusion: BEKS is recommended to inhibit HAM muscle activity and improve the GM/HAM muscle activity ratio.