• Title/Summary/Keyword: Bridge Decks

Search Result 335, Processing Time 0.03 seconds

Fatigue failure of decks in highway bridge (도로교 RC 바닥판의 피로파괴에 관한 연구)

  • 김경찬;사림신장;정상정일;권혁문
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.169-175
    • /
    • 1993
  • Possibility of fatigue failure in punching shear of reinforced concrete decks of highway bridges is analytically investigated by applying Matsui et al.'s experimental finding to models of 2-meter span decks designed in compliance with previous and current codes. Decks made of concrete of compressive strength of 240㎏/㎠ showed longer fatigue life than decks made of 210㎏/㎠ concrete at the same Md/U rations ; higher Md/U ratio resulted in linger fatigue life but its effect is insignificant in decks having effective depths of 14 and 15cm. Decks designed to higher load factors as specified by current codes showed longer fatigue life than decks designed to lower load factors specified by previous codes ; yet fatigue failure appeared to occur in both decks within their normal life span, thus indicating need for redefining the minimum deck thickness.

  • PDF

A Study on Behavior of Snap-fit Connection in GFRP composite deck during assembling or disassembling (수직결합식 복합소재 바닥판 연결부의 착탈시 거동분석)

  • Yoo, Suk-Jin;Lee, Sung-Woo;Hong, Kee-Jeung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.282-287
    • /
    • 2008
  • Since glass-fiber reinforced composite decks have high-strength, light-weight and high durability, many researchs on the composite decks for bridges are currently performed and many composite decks are developed. In this paper, a composite deck with snap-fit connection for pedestrian bridge is developed and studied. A study on behavior of snap-fit connection of composite deck for pedestrian bridge during assembling or disassembling is performed by analysis and experiment.

  • PDF

Development of Bridge Expansion Joint for Fiber Reinforced Polymer Deck (FRP바닥판용 신축이음장치 개발)

  • Lee, Young-Ho;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.348-353
    • /
    • 2007
  • This paper presents design specifications and characteristics of bridge expansion joints to develop new type-joints in fiber reinforced polymer decks. Based on properties of the fiber reinforced polymer decks and fundamental process to calculate their expansion length, new expansion joints fur fiber reinforced polymer decks on typical steel or concrete girder are developed and proposed.

  • PDF

An Experimental Study on Reusing of Waste Materials in Ligh-Weigh Composite Bridge Deck for Civil Structures (폐기물의 재이용과 경량 합성 상판 개발을 위한 실험적 연구)

  • 김경진;박제선;민창동;오오다도시아끼
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.123-130
    • /
    • 1994
  • In this paper, a development of composite bridge decks was proposed for design of civil and architectural structures to reuse the empty cans and plastics etc. The experimental specimens were made of rigid foamed urethane taking advantage of corrosionlessness in steel bridge decks, and simplicity in the field construction. 'Therefore, introducing the empty cans into the rigid foamed urethane, this experimentation have been carried out to demonstrate and evaluate the structural behavior by means of loading and vibration tests in composite bridge decks. Consequently, it was possible that had a good effect on the structural behavior by absorbing the strain due to the low elasticity of rigid foamed urethane, and not influence to cans in composite bridges.

Case Study on the Void Characteristics of Concrete Bridge Decks on the Expressway (공용중인 교량 바닥판의 내구성에 공극특성이 미치는 영향)

  • Suh, Jin-Won;Rhee, Ji-Young;Kim, Hong-Sam;Lee, Byeong-Ju;Shin, Do-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.425-428
    • /
    • 2008
  • Concrete bridge decks, as well as asphalt pavement, are directly exposed to traffic loads and environmental conditions like rain water and deiceing chemicals. In this reason, there are often observed the deteriorations of asphalt overlay and of concrete deck under pavement. In this reason, it is important to identify the clear cause of concrete quality from a practical point of view. Therefore, in this paper it was initiated to ultimately suggest a protocol offering guidance as to assurance the quality control of concrete bridge deck on the part of void characteristics of concrete. Examinations such as visual inspection, deteriorated depth, and various void characteristic performed from cored specimens of 19 concrete bridge decks of various local conditions on the expressway. This paper discuss that the bridge deck condition analyses from the testing results were compared to a foreign guide line.

  • PDF

Development of Live Load Moment Equations Using Orthotropic Plate Theory (직교 이방성 판 이론을 이용한 바닥판 활하중 모멘트 산정식 개발)

  • Ahn Ye-Jun;Nam Suk-Hyun;Park Jang-Ho;Shin Yung-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.749-756
    • /
    • 2006
  • Because of the orthotropic elastic properties and significant two-way bending action, orthotropic plate theory may be suitable for describing the behavior of concrete filled grid bridge decks. Current AASHTO LRFD Bridge Design Specification(2004) has live load moment equations considering flexural rigidity ratio between longitudinal and transverse direction, but the Korea highway bridge design specification(2005) doesn't. The Korea highway bridge standard specification LRFD(1996) considers an orthotropic plate model with a single load to estimate live load moments in concrete filled grid bridge decks, which may not be conservative. This paper presents live load moment equations for truck and passenger car, based on orthotropic plate theory. The equations of truck model use multiple presence factor, impact factor, design truck and design tandem of the Korea highway bridge standard specification LRFD(1996). The estimated moments are verified through finite-element analyses.

  • PDF

Shape Optimum Design of Pultruded FRP Bridge Decks (인발성형된 FRP 바닥판의 형상 최적설계)

  • 조효남;최영민;김희성;김형열;이종순
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.319-332
    • /
    • 2004
  • Due to their high strength to weight ratios and excellent durability, fiber reinforced polymer(FRP) is widely used in construction industries. In this paper, a shape optimum design of FRP bridge decks haying pultruded cellular cross-section is presented. In the problem formulation, an objective function is selected to minimize the volumes. The cross-sectional dimensions and material properties of the deck of FRP bridges are used as the design variables. On the other hand, deflection limits in the design code, material failure criteria, buckling load, minimum height, and stress are selected as the design constraints to enhance the structural performance of FRP decks. In order to efficiently treat the optimization process, the cross-sectional shape of bridge decks is assumed to be a tube shape. The optimization process utilizes an improved Genetic Algorithms incorporating indexing technique. For the structural analysis using a three-dimensional finite element, a commercial package(ABAQUS) is used. Using a computer program coded for this study, an example problem is solved and the results are presented with sensitivity analysis. The bridge consists of a deck width of 12.14m and is supported by five 40m long steel girders spaced at 2.5m. The bridge is designed to carry a standard DB-24 truck loading according to the Standard Specifications for Highway Bridges in Korea. Based on the optimum design, viable cross-sectional dimensions for FRP decks, suitable for pultrusion process are proposed.

Comparison of the Fatigue Behaviors of FRP Bridge Decks and Reinforced Concrete Conventional Decks Under Extreme Environmental Conditions

  • Kwon, Soon-Chul;Piyush K. Dutta;Kim, Yun-Hae;Anido, Roberto-Lopez
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • This paper summarizes the results of the fatigue test of four composite bridge decks in extreme temperatures (-30$^{\circ}C$ and 50$^{\circ}C$ ). The work was performed as part of a research program to evaluate and install multiple FRP bridge deck systems in Dayton, Ohio. A two-span continuous concrete deck was also built on three steel girders for the benchmark tests. Simulated wheel loads were applied simultaneously at two points by two servo-controlled hydraulic actuators specially designed and fabricated to perform under extreme temperatures. Each deck was initially subjected to one million wheel load cycles at low temperature and another one million cycles at high temperature. The results presented in this paper correspond to the fatigue response of each deck for four million load cycles at low temperature and another four million cycles at high temperature. Thus, the deck was subjected to a total of ten million cycles. Quasi-static load-deflection and load-strain responses were determined at predetermined fatigue cycle levels. Except for the progressive reduction in stiffness, no significant distress was observed in any of the composite deck prototypes during ten million load cycles. The effects of extreme temperatures and accumulated load cycles on the load-deflection and load-strain response of FRP composite and FRP-concrete hybrid bridge decks are discussed based on the experimental results.

Yaw wind effect on flutter instability of four typical bridge decks

  • Zhu, Le-Dong;Xu, You-Lin;Guo, Zhenshan;Chang, Guang-Zhao;Tan, Xiao
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.317-343
    • /
    • 2013
  • When evaluating flutter instability, it is often assumed that incident wind is normal to the longitudinal axis of a bridge and the flutter critical wind speed estimated from this direction is most unfavorable. However, the results obtained in this study via oblique sectional model tests of four typical types of bridge decks show that the lowest flutter critical wind speeds often occur in the yaw wind cases. The four types of bridge decks tested include a flat single-box deck, a flat ${\Pi}$-shaped thin-wall deck, a flat twin side-girder deck, and a truss-stiffened deck with and without a narrow central gap. The yaw wind effect could reduce the critical wind speed by about 6%, 2%, 8%, 7%, respectively, for the above four types of decks within a wind inclination angle range between $-3^{\circ}$ and $3^{\circ}$, and the yaw wind angles corresponding to the minimal critical wind speeds are between $4^{\circ}$ and $15^{\circ}$. It was also found that the flutter critical wind speed varies in an undulate manner with the increase of yaw angle, and the variation pattern is largely dependent on both deck shape and wind inclination angle. Therefore, the cosine rule based on the mean wind decomposition is generally inapplicable to the estimation of flutter critical wind speed of long-span bridges under skew winds. The unfavorable effect of yaw wind on the flutter instability of long-span bridges should be taken into consideration seriously in the future practice, especially for supper-long span bridges in strong wind regions.

Fatigue Performance of Precast Decks using Ribbed Loop Joints in a Two-Girder Continuous Composite Bridge (2거더 연속합성형교 요철형 루프이음 프리캐스트 바닥판의 피로성능)

  • Lee, Han-Joo;Yeo, Woon-Young;Shin, Dong-Ho;Kim, In-Gyu;Park, Se-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.85-93
    • /
    • 2019
  • Structural performance and serviceability of precast deck system are mostly determined by connection details between precast decks. Particularly, since the bridge deck is under repeated loads such as traffic loads, fatigue behavior and performance of joints should be investigated. In this study, a two-girder continuous composite bridge specimen was fabricated using the asymmetric ribbed loop joints, and static and fatigue load tests were conducted to evaluate the structural behavior and the crack pattern of the bridge deck. From the test results, the proposed precast deck system resulted in sufficient fatigue performance and failure strength. Therefore, the proposed precast deck system can be applied to the connection part of precast decks effectively.