• 제목/요약/키워드: Bridge/Rail Longitudinal Analysis

검색결과 35건 처리시간 0.025초

교량 상 콘크리트궤도 체결장치의 종저항 거동특성에 대한 실험적 연구 (Experimental Study of Characteristics of Longitudinal Resistance Behavior of Fasteners in Concrete Track on Bridges)

  • 윤경민;박범호;민경환;임남형
    • 한국철도학회논문집
    • /
    • 제19권5호
    • /
    • pp.638-646
    • /
    • 2016
  • 고속철도 교량 상에 설치되는 장대레일은 궤도와 교량의 상호작용에 의해 레일에 발생하는 축력분포가 토노반상에 비해 매우 복잡하며, 교량에 가해지는 외력의 영향이 추가로 발생되어 장대레일 축력과 함께 추가적인 문제를 야기한다. 이상과 같은 궤도-교량 상호작용에 의해 발생되는 각종 물리적인 현상을 해석하고 제한하기 위해서 국내에서는 교량 상 궤도 설계 시 설계지침(KR C-08080, 궤도-교량 종방향 상호작용 해석)을 운영하고 있다. 국내의 궤도/교량 상호작용 해석 및 설계 기술은 유럽의 UIC 774-3R에서 제시된 해석방법과 기준을 적용하며, 보수적인 해석방법과 결정론적인 단일 물성치를 제시하고 있다. 최근 하중 이력을 고려한 궤도-교량 상호작용 해석기법에 대한 연구가 활발하게 진행되고 있으나, 하중이력에 의한 저항물성치 변화에 대한 연구는 미흡한 실정이다. 본 연구에서는 교량 상 콘크리트궤도에 사용되는 레일체결장치를 대상으로 하중이력에 대한 거동특성을 분석하였다. 이를 위하여 현장조건을 모사하여 종방향 하중과 수직하중을 재하하였으며, 실험결과 분석을 통하여 체결장치별 저항물성치(저항력, 탄성한계변위)를 제시하였다. 또한 코드에서 제시하는 물성치와 비교연구를 수행하였다.

Heuristic Decision Method를 이용하여 구조물-궤도 종방향 상호작용 및 구조물-차량 상호작용을 고려한 고속철도 교량의 신뢰성 최적설계 기법 개발 (Development of Reliability-Based Optimum Design of High-Speed Railway Bridges Considering Structure-Rail Longitudinal Interaction and Structure-Vehicle Interaction Using Heuristic Decision Method)

  • 임영록
    • 한국방재학회 논문집
    • /
    • 제10권3호
    • /
    • pp.31-38
    • /
    • 2010
  • 본 연구에서는 교량 구조물-궤도 종방향 상호작용, 교량 구조물-차량 상호작용을 고려한 신뢰성 최적설계 방법을 제안하고, 알고리즘의 개발을 통하여 본 연구에서 제안한 방법의 효율성을 검증하였다. 구조해석 프로그램은 ABAQUS를 사용하였으며, 최적화 방법은 Automated Design Synthesis(ADS)에서 신뢰성면에서 우수한 ALM-BFGS방법을 사용하였다. 일반적으로 ALM-BFGS방법은 최적해 방향을 탐색하는데 있어 1방향 탐색을 하지 않으며 Push-Off Factor 값이 보통 0.1~0.2에서 대부분 수렴하나 본 연구에서는 'Heuristic Decision Method' 의하여 결정된 Push-Off Factor 값이 90일 때 1방향 탐색인 Golden Section Method의 적용이 필요하였으며, 알고리즘이 잘 수렴함을 확인하였다. 구조물-궤도 종방향 상호작용, 구조물-차량의 상호작용에 의한 응답을 제약조건으로 설정하여 단면 설계시 반영될 수 있도록 하였다. 본 연구는 구조물-궤도 종방향 상호작용 및 구조물-차량 상호작용을 고려한 설계기법에 대한 효율성 및 경제성을 증명하기 위하여 5${\times}$(1@50m) 2주형 강합성 거더교에 대한 최적설계를 수행하였으며, 본 연구에서 제안하는 상호작용을 고려하는 설계기법이 기존의 상호작용을 고려하지 않은 설계방법보다 경제적이며 효율적임을 확인하였다.

Experimental and analytical behavior of a prestressed U-shaped girder bridge

  • Wu, Xun;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.427-436
    • /
    • 2017
  • This paper presents an experimental and analytical investigation on the behavior of a U-shaped girder subjected to operation, cracking and ultimate loads. A full-scale destructive test was conducted on a U-shaped girder to study the cracking process, load-carrying capacity, failure mechanism and load-deformation relationships. Accordingly, the tested U-shaped girder was modeled using ANSYS and a non-linear element analysis was conducted. The investigation shows that the U-shaped girder meets the specified requirements of vertical stiffness, cracking and ultimate load capacity. Unfavorable torsional effect is tolerable during operation. However, compared with box girders, the U-shaped girder has a more transverse mechanical effect and longitudinal cracks are apt to occur in the bottom slab.

일반체결구/활동체결구 접속구간 차량 및 궤도 안정성 평가에 관한 연구 (A Study on Stability Assessment of Vehicle and Track on Transition between Conventional and Zero-Longitudinal Resistance Rail Fastener)

  • 양신추;장승엽;김은;유진영;홍성모
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1078-1083
    • /
    • 2008
  • In this paper, assessed are the stability of vehicle and track according to vertical support stiffness difference on the transition between conventional and zero-longitudinal resistance (ZLR) rail fastener on bridge. For this, the spring constants of rail fastener have been determined according to different load ranges - KTX load (with or without impact factor) and test load of EN standards - from results of laboratory test on rail pad, the stability analysis of vehicle and track has been performed according to numbers or installation length of ZLR fasteners using vertical vehicle-track coupled model to consider train-track interaction. The analysis results reveal that only the wheel load variation slightly exceed the limit value when 2 ZLR fasteners are used with spring constant determined within the EN test load range, but, in all other cases, all evaluation items are satisfied. Thus, it can be said that the stability of vehicle and track will not be degraded by ZLR fastener.

  • PDF

HR Plate의 경량전철 협폭박스거더교 적용 (Application of Narrow Steel Box Girder Bridge of Light Rail Transit with HR Plate)

  • 박대수;황낙연;정경섭;이성행
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.365-375
    • /
    • 2006
  • The HR Plates made hot rolled coils is lower than general structural steel plates in price. No difference between general steel plates and HR Plates with thickness up to 22mm are found in most characters such as cutting operation, fabrication and even welding. It can be concluded that HR Plates with thickness up to 22mm can be applied to flanges and webs of any girders as well as longitudinal ribs, longitudinal and vertical stiffeners of steel bridges appropriately. To increase the demand of HR Plates with thickness up to 22mm, it is necessary that HR Plates is applicable to full member in steel bridge including main girder.In this study, availabilities of the narrow steel box girder of light railway transit with HR Plate width as a main member are discussed. For application of HR Plate to steel bridge with 50m span or more, new support systems in three types are presented. Computational analysis is performed in 15 bridge models of light railway transit with beam element and plate element. As a analysis results, three models in light railway transit are presented. We finally come to the conclusion that HR Plates can be apply to narrow steel box girder in the light railway transit.

  • PDF

PSC 박스거더 교량의 상호작용에 의한 KTX 동력차의 윤하중 분포 해석 (A Dynamic Analysis of Wheel Forces distribution of KTX locomotive for Interaction of PSC box Girder Bridge)

  • 오순택;이동준;심영우;윤준관;김한수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.680-689
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a comprehensive estimation of the dynamic response spectrum for locomotive's wheels running over a Pre-Stressed Concrete (PSC) box girder bridge on the Korea high speed railway. The wheel force spectrum with the bridge behavior are analyzed as the dynamic procedure for various running speeds (50~450km/h). The high-speed railway locomotive (KTX) is used as 38-degree of freedom system. Three displacements(vertical, lateral, and longitudinal) and three rotational components (pitching, rolling, and yawing). For one car-body and two bogies as well as five movements except pitching rotation components for four wheel axes forces are considered in the 38-degree of freedom model. Three dimensional frame element is used to model of the PSC box girder bridges, simply supported span length of 40m. The irregulation of rail-way is derived using the exponential spectrum density function under assumption of twelve level tracks conditions based on the normal probability procedure. The dynamic responses of bridge passing through the railway locomotive with high-speed analyzed by Newmark-${\beta}$ method and Runge-Kutta method are compared and contrasted considering the developed models of bridge, track and locomotive comprehensively. The dynamic analyses of wheel forces by Runge-Kutta method which are able to analyze the forces with high frequency running on the bridge and ground rail-way are conducted. Additionally, wheel forces spectrum and three rotational components of vehicle body for three typical running speeds is also presented.

  • PDF

KTX 차량의 주행안정성 평가를 위한 노상과 PSC 교량 상의 윤하중분포 동적해석 연구 (A Study of Dynamic Analysis of Wheel Force Spectrum between Road and PSC Bridge tracks for the KTX Safety Evaluation)

  • 이동준;오순택;심영우;윤준관;김한수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.793-799
    • /
    • 2011
  • A comprehensive analysis of wheel force spectrum is conducted to provide the KTX safety evaluation with structural behaviour of Pre-Stressed Concrete (PSC) box bridge due to various high speeds. The wheel spectrum for KTX locomotive running over road and PSC bridge tracks is compared using irregular track responses with numerical models of 170m approach road track and 40m span length of PSC box bridge The high-speed railway locomotive is used as 38-degree of freedom system. Three displacements (vertical, lateral, and longitudinal) and three rotational components (pitching, rolling, and yawing) for one car-body and two bogies are considered in the 38-degree of freedom model. Three dimensional frame element of finite element method (FEM) is used to model of the simply supported PSC box bridge. The irregulation of rail-way is derived using the experiential spectrum density function under assumption of twelve level tracks conditions based on the normal probability procedure. The dynamic analyses by Runge-Kutta method which are able to analyze the high frequency wheel force spectrum. A dynamic behaviour of KTX due to high speeds until 450km/h developing speed with relative time is analysed and compared the characteristics running over the road and PSC box bridge tracks. Finally, the KTX integrated evaluation method of safety between high speed train and bridge is presented.

  • PDF

Shear lag effects on wide U-section pre-stressed concrete light rail bridges

  • Boules, Philopateer F.;Mehanny, Sameh S.F.;Bakhoum, Mourad M.
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.67-80
    • /
    • 2018
  • Recently, U-section decks have been more and more used in metro and light rail bridges as an innovative concept in bridge deck design and a successful alternative to conventional box girders because of their potential advantages. U-section may be viewed as a single vent box girder eliminating the top slab connecting the webs, with the moving vehicles travelling on the lower deck. U-section bridges thus solve many problems like limited vertical clearance underneath the bridge lowest point, besides providing built-in noise barriers. Beam theory in mechanics assumes that plane section remains plane after bending, but it was found that shearing forces produce shear deformations and the plane section does not remain plane. This phenomenon leads to distortion of the cross section. For a box or a U section, this distortion makes the central part of the slab lagging behind those parts closer to the webs and this is known as shear lag effect. A sample real-world double-track U-section metro bridge is modelled in this paper using a commercial finite element analysis program and is analysed under various loading conditions and for different geometric variations. The three-dimensional finite element analysis is used to demonstrate variations in the transverse bending moments in the deck as well as variations in the longitudinal normal stresses induced in the cross section along the U-girder's span thus capturing warping and shear lag effects which are then compared to the stresses calculated using conventional beam theory. This comparison is performed not only to locate the distortion, warping and shear lag effects typically induced in U-section bridges but also to assess the main parameters influencing them the most.

Vibration characteristic analysis of high-speed railway simply supported beam bridge-track structure system

  • Jiang, Lizhong;Feng, Yulin;Zhou, Wangbao;He, Binbin
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.591-600
    • /
    • 2019
  • Based on the energy-variational principle, a coupling vibration analysis model of high-speed railway simply supported beam bridge-track structure system (HSRBTS) was established by considering the effect of shear deformation. The vibration differential equation and natural boundary conditions of HSRBTS were derived by considering the interlayer slip effect. Then, an analytic calculation method for the natural vibration frequency of this system was obtained. By taking two simply supported beam bridges of high-speed railway of 24 m and 32 m in span as examples, ANSYS and MIDAS finite-element numerical calculation methods were compared with the analytic method established in this paper. The calculation results show that two of them agree well with each other, validating the analytic method reported in this paper. The analytic method established in this study was used to evaluate the natural vibration characteristics of HSRBTS under different interlayer stiffness and length of rails at different subgrade sections. The results show that the vertical interlayer compressive stiffness had a great influence on the high-order natural vibration frequency of HSRBTS, and the effect of longitudinal interlayer slip stiffness on the natural vibration frequency of HSRBTS could be ignored. Under different vertical interlayer stiffness conditions, the subgrade section of HSRBTS has a critical rail length, and the critical length of rail at subgrade section decreases with the increase in vertical interlayer compressive stiffness.

Calculation method and application of natural frequency of integrated model considering track-beam-bearing-pier-pile cap-soil

  • Yulin Feng;Yaoyao Meng;Wenjie Guo;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • 제49권1호
    • /
    • pp.81-89
    • /
    • 2023
  • A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.