• Title/Summary/Keyword: Brewster-angle microscope (BAM)

Search Result 8, Processing Time 0.026 seconds

The Study on the Phase Transition of Langmuir Film by Brewster-Angle Microscope (BAM(Brewster-Angle Microscope)으로 관측한 Langmuir막의 상전이에 관한 연구)

  • Cho, Wan-Je;Song, Kyung-Ho;Park, Tae-Gone;Park, Keun-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.323-326
    • /
    • 2000
  • In this study, we used Brewster-Angle Microscope(BAM) to study on the molecular orientation of monolayer on the water surface. The behaviors of molecules on three different subphase have been observed. Reproducible $\pi$-A isotherm have been obtained only on information about phase transition by molecular area. BAM facilitates the observation of morphology by optical anisotropy and thickness in monolayer and multilayers as BAM is shown to be sensitive to anisotropy of film. Every transition was found by BAM technique, either as a dramatic change in degree of contrast or as a sudden alteration of molecular action and $\pi$-A isotherm.

  • PDF

Obervation of Langmuir Films Using Displacement Current Method and BAM (Brewster-Angle Microscope) (변위전류법과 BAM(BREWSTER-ANGLE MICROSCOPE)를 이용한 LANGMUIR막의 관찰)

  • Song, Kyung-Ho;Park, Tae-Gone;Park, Keun-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.38-42
    • /
    • 2001
  • To observe the Langmuir films, displacement current measuring system(Nippon Laser & Electronics), $\pi-A$ isotherms measuring device, and Brewster Angle Microscope(BAM) were used. As results, for 8A5H, big tilt angle changes of many molecules were detected before liquid expanded phase when the monolayer was compressed and expanded by barrier. Also many small and bright points were detected by BAM when the displacement current radically changed. In $\pi$-A isotherms, surface pressure of 8A5H was radically decreased between 35 and 40[mN/m] and monolayer was assumed to be collapsed in solid condensed phase, since large bright domain was observed without change of displacement current and this bright boundary was not classified part of domain in BAM image. If we observe behaviors of molecules on the water surface in these three measurement at the same time, we can get more precise informations on L films and it could be good data for fabricating LB films.

  • PDF

A Study of Liquid Crystal Alignment Layer Using Brewster Angle Microscope (Brewster Angle Microscope를 이용한 액정 배향막 연구)

  • 정치섭
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 1999
  • The surface morphology of liquid crystal alignment layer has been investigated by using Brewster angle microscope(BAM) for the first time. The samples used in this work for liquid crystal alignment layer were mechanically rubbed polyimide films. The rubbing pattern on this layer has been analyzed with the terms of microgroove and rubbing induced optical birefringence. For the mechanically rubbed surface, the geometrical factors of microgroove play the major role for the formation of rubbing pattern. We propose that the BAM can be used as a powerful tool not only for observing the rubbing pattern, but also for inspecting the surface defects.

  • PDF

A Study on the Molecular Orientation of Nematic Liquid Crystal Monolayers on the water Surface (네마틱 액정의 수면상 단분자막에서의 분자 배향 연구)

  • 조완제;송경호;박근호;강영수;박태곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.610-612
    • /
    • 1999
  • In this study, we used both displacement-current method and BAM(Brewster-Angle Microscope) to study on the molecular orientation of monolayer on the water surface. The displacement-current method measured behaviors of molecules by current and BAM was shown to be sensitive to film anisotropy even when the molecules were not tilted as long as the unit cell was anisotropic. Every transition was visible with BAM technique, either as a dramatic change in decree of contrast or as a sudden alteration of the mosaic domain texture.

  • PDF

A Study on the Valve Regulated Lead-Acid Battery using Sulfuric Acid Gel Electrolyte for New Generation Substitution Energy (황산 겔 전해질을 사용한 차세대 대체에너지용 밀폐형 납축전지에 관한 연구)

  • Park, Keun-Ho;Ju, Chan-Hong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.164-173
    • /
    • 2004
  • The capacity and long life of gel electrolyte batteries is connected with gas recombination producting $PbO_2$ and Pb electrode. We prepared with sulfuric acid gel electrolyte to know gel characteristics per density to assemble valve regulated lead-acid (VRLA) batteries. We studied on actions of sulphuric acid gel electrolyte by measuring electrolyte dispersion using Brewster-angle microscope (BAM), charge-discharge cycle, and electrode structure using scanning election microscope (SEM). Sulphuric acid density 1.210 showed excellent gel dispersion in sol condition, electrode condition after fifty cycles in this study.

A Study on the Valve Regulated Lead-Acid Battery using Phosphoric Acid Gel Electrolyte (인산 겔 전해질을 사용한 밀폐형 납축전지에 관한 연구)

  • Ju, Chan-Hong;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.296-308
    • /
    • 2003
  • The capacity and long life of gel electrolyte batteries is connected with gas recombination producting $PbO_2$ and Pb electrode. We were prepared with phosphoric acid gel electrolyte to know gel characteristics per density to assemble VRLA batteries. We studied by measuring electrolyte dispersion using Brewster-angle microscope(BAM), charge-discharge cycle and electrode structure using scanning election microscope(SEM) per electrolyte density. As a results, phosphoric acid density 1.210 was excellent gel dispersion in sol condition, electrode condition after fifty cycles in this study.

A Study on the Microstructure of Organic Ultra Thin Films and Phase Transition of Langmuir Films in BAM (BAM을 이용한 L막의 상전이 현상과 유기초박막의 미세구조에 관한 연구)

  • Kim, Byung-Geun;Chon, Dong-Kue;Kim, Young-Keun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.938-941
    • /
    • 2003
  • It is well known that the state of existence of molecules on the surface of water changes during compression of the molecules. Electric methods, such as measurement of the surface potential or displacement current are also useful for investigating dynamic changes of molecular state on the water surface during compression and Transformation of molecular film occurs only usually in air-water interface, 2 dimensions domain's growth and crash are achieved. Organic thin film that consist of growth of domain can understand correct special quality of accumulation film supplying information about fine structure and properties of matter of device observing information and so on that is surface forward player and optic enemy using AFM one of SPM application by nano electronics. In this paper Langmuir (L) that is one of basis technology to manufacture of organic matter device using biology material PBDG that is kind of polypeptide that have biology adaptedness. The Experiment method used ${\pi}-A$ isotherm and BAM(Brewster Angle Microscopy), using the BAM, we can to the molecular orientation of monolayer on the water surface and directly see the morphology of the films on water subphase as well as that of the films.

  • PDF

Electrical Properties and Fabrication of Ultra-thin Films using p-HP Polymer (p-HP 고분자 LB초박막의 제작과 전기적 특성)

  • Yu, Seung-Yeop;Jeong, Sang-Beom;Park, Jae-Cheol;Gwon, Yeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.7
    • /
    • pp.287-291
    • /
    • 2002
  • We fabricated the crosslinked films using p-hexadecoxyphenol (p-HP), which is amphiphilic and can form polyion complexes with formaldehyde at the air-water interface. The behavior of polyion complexation at the air-water interface and the surface structure of LB films was investigated by Brewster angle microscope(BAM) and scanning Maxwell-stress microscope (SMM), respectively. Also, the electrical properties for crosslinking in phenol-formaldehyde LB films were investigated by measuring conductivity and dielectric constant. The conductivities of p-HP LB films are as follows: heat-treatment of 1% formaldehyde subphase(3.76$\times$10$^{-15}$ ~4.76$\times$10$^{-1}$5[S/cm])$\times$10$^{-14}$ ~1.74$\times$10$^{-14}$ [S/cm]). Also, relative dielectric constants of p-HP LB films were reduced from 6.76~7.84 (pure water) to 2.97~3.25 (heat-treatment of 1% formaldehyde subphase))