• Title/Summary/Keyword: Brewing

Search Result 343, Processing Time 0.029 seconds

Analysis of purine content in beer according to fermentation temperature (발효 온도에 따른 맥주의 퓨린 함량 분석)

  • Kwak, Hee-Jae;Kim, Soo-Kyoung;Lee, Byung-Seop;Li, Xi-Hui;Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.379-383
    • /
    • 2018
  • Beer is the most popular alcoholic fermentation product, but its high purine content has been known to be associated with hyperuricemia and gout. In this study, we examined whether the purine content of beer could be lowered by changing the fermentation temperature during beer-brewing. We brewed beers at different temperatures, $10^{\circ}C$ and $20^{\circ}C$, that are two typical beer-brewing conditions for bottom- and top-fermentation, respectively, and the contents of the representative purines, adenine, guanine, and xanthine in each beer were measured by high performance liquid chromatography. As a result, the total purine content of the beer fermented at $10^{\circ}C$ was lower than that of fermented beer at $20^{\circ}C$. Especially, the content of adenine was lowered significantly.

Characterization of a Thermostable Lichenase from Bacillus subtilis B110 and Its Effects on β-Glucan Hydrolysis

  • Huang, Zhen;Ni, Guorong;Wang, Fei;Zhao, Xiaoyan;Chen, Yunda;Zhang, Lixia;Qu, Mingren
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.484-492
    • /
    • 2022
  • Lichenase is an enzyme mainly implicated in the degradation of polysaccharides in the cell walls of grains. Emerging evidence shows that a highly efficient expression of a thermostable recombinant lichenase holds considerable promise for application in the beer-brewing and animal feed industries. Herein, we cloned a lichenase gene (CelA203) from Bacillus subtilis B110 and expressed it in E. coli. This gene contains an ORF of 729 bp, encoding a protein with 242 amino acids and a calculated molecular mass of 27.3 kDa. According to the zymogram results, purified CelA203 existed in two forms, a monomer, and a tetramer, but only the tetramer had potent enzymatic activity. CelA203 remained stable over a broad pH and temperature range and retained 40% activity at 70℃ for 1 h. The Km and Vmax of CelA203 towards barley β-glucan and lichenan were 3.98 mg/ml, 1017.17 U/mg, and 2.78 mg/ml, 198.24 U/mg, respectively. Furthermore, trisaccharide and tetrasaccharide were the main products obtained from CelA203-mediated hydrolysis of deactivated oat bran. These findings demonstrate a promising role for CelA203 in the production of oligosaccharides in animal feed and brewing industries.

Impact of Korean Malting Barley Varieties on Malt Quality

  • Young-Mi Yoon;Jin-Cheon Park;JaeBuhm Chun;Yang-Kil Kim;Hyeun-Cheol Cheo;Chang-Hyun Lee;Seul-Gi Park;Tae-Il Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.18-18
    • /
    • 2022
  • Barley has been used for the production of malt in the brewing industry. Malting is the process of preparing barley through partial germination. Malt extract is the most important quality parameter for malt quality. The grain and malt quality parameters of ten Korean malting barley varieties were studied. Malts was prepared using Phoeix automated micro malting system(Phoenix Bio, Australia). Quality analysis of Barley and malt was determined according to European brewery convention(EBC, 1998) and American society of brewing chemists(ASBC, 1997) method. And the hordeins of barley and malt were extracted with 50% isopropyl alcohol(IPA, 2-propanol) of 1% dithiothreitol(DTT). The analysis of hordeins was carried out by ultra-performance liquid chromatography(UPLC). The mean values of 1000-grains weight, assortment rate, protein content, starch content, beta-glucan content, husk rate, germination energy, germination capacity and water sensitivity of grain were 45.8g, 86.8%, 11.9%, 58.0%, 3.8%, 14.0%, 96.2%, 97.2%, 10.0%, respectively. The mean values of protein content, friability, diastatic power, extract, soluble protein, Kolbach index, beta-glucan of malt and wort were 11.3%, 87.6%, 201WK(Windish Kolbach), 79.3%, 4.6%, 41%, 85mg/L, respectively. UPLC analysis of grain and malt hordeins revealed that the amount of hordeins significantly degraded during malting. Also, we could successfully be used to compare hordein polypeptide patterns with malt quality.

  • PDF

Comparison of different colorimetric assays and application of the optimized method for determining the liberated fluoride contents in various tea extracts

  • Le-Thi Anh-Dao;Do Minh-Huy;Nguyen-Ho Thien-Trang;Nguyen Cong-Hau
    • Analytical Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.87-97
    • /
    • 2024
  • The appropriate intake of fluoride (F-) is beneficial to human health; however, the over-consumption can result in various potentially harmful effects. This study compared different colorimetric reagents, i.e., aluminium-xylenol orange (Al-XO), zirconium-xylenol orange (Zr-XO), and zirconium-alizarin red S (Zr-ARS), for fluoride measurements by the UV-Vis, in terms of reaction mechanisms, method sensitivity, and interferences from aluminium and ferric ions. The colorimetric procedures were optimized, and the analytical methods were evaluated. The goodness of linearity (R2 > 0.998) was obtained for all three assays within the concentration range of 1.0-20.0 mg/L fluoride in deionized water, in which the method sensitivity followed the descending order of Zr-XO > Al-XO > Zr-ARS. The Zr-XO was applied for determining the fluoride in different tea extracts in water (90 ℃ and 60-minute-brewing) and black tea demonstrated the highest fluoride content (3.0-3.6 mg/L). The effects of brewing time and temperature on the release of fluoride in the tea extracts were also investigated, indicating these are critical factors for the fluoride extraction. This study highlighted the application potentials of the UV-Vis measurement as a simple, convenient, and cheap analytical approach and discussed different colorimetric reagents used for fluoride determination in tea extracts in the context that the UV-Vis spectrophotometers are commonly equipped in most laboratories.

Studies on the Yeasts for the Brewing of Soy sauce(Part 7) -Industrial utilization of Saccharomyces rouxii $T_9$ in the brewing of soy sauce- (간장발효에 관여하는 효모에 관한 연구 (제 7 보) -Saccharomyces rouxii $T_9$을 이 용한 간장의 발효시험-)

  • Lee, Taik-Soo;Lee, Suk-Kun;Chu, Young-Ha;Shin, Bo-Kyu
    • Applied Biological Chemistry
    • /
    • v.14 no.2
    • /
    • pp.121-129
    • /
    • 1971
  • During the Brewing of Soy Sauce on an industrial scale, Saccharomyces rouxii $T_9$ was cultured and added to the soy sauce mash. The comparative experiments of soy sauce mash in non-addition and addition group of yeast were examined in this report. The yeast flora and chemical composition of Soy sauce mash through out the brewing were observed and the results obtained were as follows. (1) The number of Osmophilic yeast in one ml of soy sauce mash showed $185{\times}10^3$ 1 month after mashing and $750{\times}10^3$ 4 months after mashing in case of yeast group, while presented as $98{\times}10^3$ 1 month after mashing and $394{\times}10^3$ 4 months after mashing in case of non-yeast group. And the number of Osmphilic yeast in yeast group was twice of that in non-yeast group. (2) The number of ordinary yeast of TTC red group was shown as $2132{\times}10^3\;to\;3252 ×10^3$ 5 to 6 months after mashing in case of yeast group, while presented $752{\times}10^3\;to\;1251{\times}10^3$ in case of non-yeast group. And the yeast group was shown more than non-yeast group in ordinary, red pink and pink yeast number. (3) TTC red yeast were strongly appeared in both addition and non-addition group of yeast from 1 month after mashing to 6 months after mashing. (4) Though total nitrogen, pure extract, pH and buffer action contents of soy sauce showed similiar tendency in yeast and non-yeast group, alcohol and color density contents were highly appeared in yeast group and reducing sugar content was in non-yeast group respectively. (5) By the results of Organic function test of soy sauce mash, the difference of taste quality in yeast and non-yeast group were not evidently appeared, however, the appearance and flavour of the soy sauce were better in yeast group than in non-yeast group.

  • PDF

Studies on Takju Brewing with Potatoes (감자를 이용(利用)한 탁주제조(濁酒製造)에 관(關)한 연구(硏究))

  • Kim, S.Y.;Oh, M.J.;Kim, C.J.
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.81-92
    • /
    • 1974
  • In order to prepare the mashing materials for 'Takju', Korean wine, with potatoes, theywere steamed, dryed, and pulverized, and their chemical components were analyzed. As a brewing method of Takju with potatoes, general 2nd stage process with Ipkuk and Bunkuk (enzyme sources), commonly used now, was carried out and the effects of preparing conditions of Ipkuk(koji) with potato flour, mashing materials and brewing conditions on the contents of Takju mash, and of storing time on the contents of Takju, were investigated and the results obtained were summarized as follows, 1. Chemical components of steamed potatoes and potato flour were Moisture; 76.2, 10.8%, Total sugar; 16.1, 69.8%, Reducing sugar; 3.45, 13.4%, Crude protein; 2.1, 11.3%, Total acid; 0.012, 0.023% and Volatile acid; 0.0012, 0.0025% respectively. 2. The most effective preparing conditions of Ipkuk with potato flour were to incubate the potato flour added 40-50% of water for 48 hours by general preparing process of Koji, and liquefying and saccharogenic amylase activities of Ipkuk incubated at above conditions were $D40^{\circ}$ 30' 128 W.V. and 13.2 A.U.. 3. The effects of various brewing conditions on the contents of Takju mashes were as follows; 1) Optimum ratio of mashing water and materials for Takju brewing with potato flour was 140ml of water to 60g of flour in 1st stage and 260ml to 140g in 2nd stage. 2) Optimum fermentating times and temperatures for Takju brewing were at $25^{\circ}C$ for 48 hours in 1st stage and at $30^{\circ}C$ for 48 hours in 2nd stage. 3) Optimum amounts of enzyme sources for Takju brewing were 20-30% of Ipkuk and 0.5% of Bunkuk in 1st stage and 1.0% of Bunkuk in 2nd stage. 4) Methanol content of the Takju mash brewed with raw potato flour was much more than that with steamed potato flour. 5) Alcohol, fusel oil and Formol nitrogen contents of the Takju mash brewed with potato flour were less than that with wheat flour, on the contrary, methanol contents and total acidifies of them were showed conversely above. 4. The changes of chemical components and microflora in the mashes during the brewing potato flour Takju were as follows; 1) The accumulation of ethanol followed rapidly in early stage, being the highest at 72 hours (11.9%). 2) Total sugar content of the mash was decreased considerably within 48-72 hours, being 2.62% at 72 hours, and thereafter slowly. 3) Reducing sugar of the mash had a tendency of decreasing, being 0.29% at 48 hours. 4) Total acidity, volatile acidity and Formol nitrogen content of the mash were increased slowly, being 7.30, 0.20, 2.55 at 48 hours. 5) Total cells of yeast appeared the highest in 72 hours ($2.1{\times}10^8$) and thereafter decreased slowly. 6) Total cells of bacteria appeared the highest in 48 hours ($2.4{\times}10^8$) and thereafter decreased or increased slightly. 5. Takju was made from the fermented mash mixed with water to be 6% of alcohol content, and the change of alcohol content, total acidity, total cells of yeast and bacteria during the storing at $30^{\circ}C$ were as follows; 1) Alcohol content of Takju was increased slightly at 24 hours (6.2%), and thereafter decreased slowly. 2) Total acidity of Takju was increased gradually, being 6.1 at 72 hours 3) Total cells of yeast and bacteria appeared the highest at 48 hours ($2.3{\times}10^8,\;1.5{\times}10^8$), and thereafter decreased slowly. 6. Alcohol content, total acidity and Formol nitrogen content of the Takju brewed with potato flour Ipkuk or wheat flour Ipkuk and steamed potatoes(1:5) were 9.8-11.3%, 5.8-7.4, 2.5-3.3 respectively, and the color of the Takju. was similar to commercial Takju. 7. The results of sensory test for various experimental Takju, showed that the Takjues brewed with the materials combined with wheat flour and steamed potatoes(4:5 or 3.5:7.5) were not significantly different in color, taste and flavor from commercial Takju, However, those with potato flour and wheat flour (1:1 or 7:3) were significantly different from commercial Takju.

  • PDF

Studies on Takju Brewing with Potatoes (감자를 이용(利用)한 탁주제조(濁酒製造)에 관(關)한 연구(硏究))

  • Kim, S.Y.;Oh, M.J.;Kim, C.J.
    • Korean Journal of Agricultural Science
    • /
    • v.1 no.1
    • /
    • pp.67-81
    • /
    • 1974
  • In order to prepare the mashing materials for "Takju", Korean wine, with potatoes they were steamed, dryed, and pulverized, and their chemical components were analyzed. As a brewing method of Takju with potatoes, general 2nd stage process with Ipkuk and Bunkuk (enzyme sources), commonly used now, was carried out and the effects of preparing conditions of Ipkuk(koji) with potato flour, mashing materials and brewing conditions on the contents of Takju mash and of storing time on the contents of Takju, were investigated and the results obtained were summarized as follows. 1. Chemical components of steamed potatoes and potato flour were Moisture; 76.2, 10.8%, Total sugar; 16.1, 69.8%, Reducing sugar; 3.45, 13.4%, Crude protein; 2.1, 11.3%, Total acid; 0.012, 0.023% and Volatile acid; 0.0012, 0.0025% respectively 2. The most effective preparing conditions of Ipkuk with potato flour were to incubate the potato flour added 40-50% of water for 48 hours by general preparing process of Koji, and liquefying and saccharogenic amylase activities of Ipkuk incubated at above conditions were $D_{40^{\circ}}{^{30{\prime}}}$ 128 W.V. and 13.2 A. U. 3. The effects of various brewing conditions on the contents of Takju mashes wereas follows; 1) Optimum ratio of mashing water and materials for Takju brewing with potato flour was 140ml of water to 60g of flour in 1st stage and 260ml to 140g in 2nd stage. 2) Optimum fermentating times and temperatures for Takju brewing were at $25^{\circ}C$ for 48 hours in 1st stage and at $30^{\circ}C$ for 48 hours in 2nd stage. 3) Optimum amounts of enzyme sources for Takju brewing 20-30% of Ipkuk and 0.5% of Bunkuk in 1st stage and 1.0% of Bunkuk in 2nd stage. 4) Methanol content of the Takju mash brewed with raw potato flour was much more than that with steamed potato flour. 5) Alcohol fusel oil and Formal nitrogen contents of the Takju mash brewed with potato flour were less than that with wheat flour, on the contrary, methanol contents and total acidities of them were showed conversely above. 4. The changes of chemical components and microflora in the mashes during the brewing potato flour Takju were as follows; 1) The accumulation of ethanol followed rapidly in early stage, being the highest at 72 hours (11.9%) 2) Total sugar content of the mash was decreased considerably within 48-72 hours, being 2.62% at 72 hours, and thereafter slowly. 3) Reducing sugar of the mash had a tendency of decreasing, being 0.29% at 48 hours. 4) Total acidity, volatile acidity and Formal nitrogen content of the mash were increased slowly, being 7.30, 0.20, 2.55 at 48 hours. 5) Total cells of yeast appeared the highest in 72 hours ($2.1{\times}10^8$) and thereafter decreased slowly. 6) Total cells of bacteria appeared the highest in 48 hours ($2.4{\times}10^8$) and thereafter decreased or increased slightly. 5. Takju was made from the fermented mash mixed with water to be 6% of alcohol content, and the change of alcohol content, total acidity, total cells of yeast and bateria during the storing at $30^{\circ}C$ were as follows; 1) Alcohol content of Takju was increased slightly at 24 hours (6.2%), and thereafter decreased slowly. 2) Total acidity of Takju was increased gradually, being 6.1 at 72 hours 3) Total cells of yeast and bacteria appeared the highest at 48 hours ($2.3{\times}10^8$, $1.5{\times}10^8$) and thereafter decreased slowly. 6. Alcohol content, total acidity and Formol nitrogen content of the Takju brewed with potato flour Ipkuk or wheat flour Ipkuk and steamed potatoes(1:5) were 9.8-11.3%, 5.8-7.4, 2.5-3.3 respectively, and the color of the Takju was similar to commercial Takju. 7. The results of sensory test for various experimental Takju, showed that the Takjues brewed with the materials combined with wheat flour and steamed potatoes (4:5 or 3.5:7.5) were not significantly different in color, taste and flavor from commercial Takju, However, those with potato flour and wheat flour (1:1 or 7:3) were significantly different from commercial Takju.

  • PDF

The Soluble Expression of the Human Renin Binding Protein Using Fusion Partners: A Comparison of ubquitin, Thioredoxin, Maltose Binding Protein-and NusA

  • Lee, Chung;Lee, Sun-Gu;Saori Takahashi;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.89-93
    • /
    • 2003
  • human renin binding protein (hRnBp), showing N-acetylglucosamine-2-epimerase activity, was over-expressed in E. coli, but was mainly present as an inclusion body. To improve its solubility and activity, ubiquitin (Ub), thioredoxin (Trx), maltose binding protein (MBP) and NusA, were used as fusion partners. The comparative solubilities of the fusion proteins were, from most to least soluble: NusA, MBP, Trx, Ub. Only the MBP fusion did not significantly reduce the activity of hRnBp, but enhanced the stability. The Origami (DE3), permitting a more oxidative environment for the cytoplasm in E. coli; helped to increase its functional activity.

Conditions for the Production of Amylase and Protease in Making Wheat Flour Nuluk by Aspergillus oryzue L2 (Aspergillus oryzae L2에 의한 밀가루 누룩 제조시 Amylase와 Pretense의 생산조건)

  • 오명환
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.2
    • /
    • pp.89-95
    • /
    • 1993
  • A Nuluk, a Korean traditional Koji for brewing, was made with wheat flour and Aspergillus oryzae L2 which had a good aroma and strong abilities In producing saccharogenic and dextrogenic enzymes. The cultural conditions for the production of saccharogenic and proteolytic enzymes were tested. The productivity of dextrogenic enzyme was improved when Nuluk was made with unsteamed wheat flour as compared with steamed one, but that of proteolytic enzyme was reduced. The addition of water containing 0.5% hydrochloric acid was unfavorable for the production of those two enzymes. The optimum ratio of water added to wheat flour for the production of those two enzymes was 28$^{\circ}C$ on the basis of wheat flour, The productivity of saccharogenic enzyme was enhanced when the Nuluk was molded after 20 hours of precultivation, but that of proteolytic enzyme was reduced as compared with no molding. The optimum temperatures for the production of saccharogenic enzyme and proteolytic enzyme were 36$^{\circ}C$ and 28$^{\circ}C$, respectively.

  • PDF

Purification and Properties of Extracellular Esterases of Aspergillus oryzae which synthesize Ethyl Caproate

  • Lee, Jong-Hoon;Sato, Toshitsugu;Kawai, Yuri;Enei, Hitoshi
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.5
    • /
    • pp.274-279
    • /
    • 1995
  • Ethyl caproate, one of the major flavor compounds deciding the quality of sake (Japanese wine), is produced during the brewing by the action of alcohol acyltransferase and esterases of sake yeast and koji mold. Extracellular esterases of Aspergillus oryzae required for ethyl caproate synthesis were purified partially. The enzymes had different optimum pH and affinity toward substrates. Substrate preferences and inhibition features showed the three enzymes to be B-type esterases or carboxylesterases (EC 3.1.1.1).

  • PDF