• Title/Summary/Keyword: Breeding environment

Search Result 620, Processing Time 0.029 seconds

TGC-based Fish Growth Estimation Model using Gaussian Process Regression Approach (가우시안 프로세스 회귀를 통한 열 성장 계수 기반의 어류 성장 예측 모델)

  • Juhyoung Sung;Sungyoon Cho;Da-Eun Jung;Jongwon Kim;Jeonghwan Park;Kiwon Kwon;Young Myoung Ko
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.61-69
    • /
    • 2023
  • Recently, as the fishery resources are depleted, expectations for productivity improvement by 'rearing fishery' in land farms are greatly rising. In the case of land farms, unlike ocean environments, it is easy to control and manage environmental and breeding factors, and has the advantage of being able to adjust production according to the production plan. On the other hand, unlike in the natural environment, there is a disadvantage in that operation costs may significantly increase due to the artificial management for fish growth. Therefore, profit maximization can be pursued by efficiently operating the farm in accordance with the planned target shipment. In order to operate such an efficient farm and nurture fish, an accurate growth prediction model according to the target fish species is absolutely required. Most of the growth prediction models are mainly numerical results based on statistical analysis using farm data. In this paper, we present a growth prediction model from a stochastic point of view to overcome the difficulties in securing data and the difficulty in providing quantitative expected values for inaccuracies that existing growth prediction models from a statistical point of view may have. For a stochastic approach, modeling is performed by introducing a Gaussian process regression method based on water temperature, which is the most important factor in positive growth. From the corresponding results, it is expected that it will be able to provide reference values for more efficient farm operation by simultaneously providing the average value of the predicted growth value at a specific point in time and the confidence interval for that value.

Field Phenotyping of Plant Height in Kenaf (Hibiscus cannabinus L.) using UAV Imagery (드론 영상을 이용한 케나프(Hibiscus cannabinus L.) 작물 높이의 노지 표현형 분석)

  • Gyujin Jang;Jaeyoung Kim;Dongwook Kim;Yong Suk Chung;Hak-Jin Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.274-284
    • /
    • 2022
  • To use kenaf (Hibiscus cannabinus L.) as a fiber and livestock feed, a high-yielding variety needs to be identified. For this, accurate phenotyping of plant height is required for this breeding purpose due to the strong relationship between plant height and yield. Plant height can be estimated using RGB images from unmanned aerial vehicles (UAV-RGB) and photogrammetry based on Structure from Motion (SfM) algorithms. In kenaf, accurate measurement of height is limited because kenaf stems have high flexibility and its height is easily affected by wind, growing up to 3 ~ 4 m. Therefore, we aimed to identify a method suitable for the accurate estimation of plant height of kenaf and investigate the feasibility of using the UAV-RGB-derived plant height map. Height estimation derived from UAV-RGB was improved using multi-point calibration against the five different wooden structures with known heights (30, 60, 90, 120, and 150 cm). Using the proposed method, we analyzed the variation in temporal height of 23 kenaf cultivars. Our results demontrated that the actual and estimated heights were reliably comparable with the coefficient of determination (R2) of 0.80 and a slope of 0.94. This method enabled the effective identification of cultivars with significantly different heights at each growth stages.

Demand Analysis of Agro-Healing Virtual Reality Therapy System Factors Considering the Characteristics of Respondents (응답자 특성을 고려한 가상 치유농장 시스템 개발요인 수요분석)

  • Koo, Hee-Dong;Kim, Soo-Jin;Bae, Seung-Jong;Kim, Dae-Sik
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • A Care farm is known to have positive effects on various people in psychological, physical, and social aspects. However, care farm services for the disabled, transportation disadvantaged, and socially disadvantaged are limited. This study conducted a demand survey in order to provide basic data for development of the Agro-Healing Virtual Reality Therapy(AVRT) system. The respondents were the ordinary person(n=127) and the disabled person(n=72), and the survey items consisted of 4 categories and 20 items, including intention to use AVRT, requirements for use, factors to be considered when developing the system, and content and program preferences. The intention to use a AVRT was found to be at a high level of 80% or more by respondent characteristics. In addition, similar results were shown in all items such as virtual reality experience, willingness to use, appropriate use time, and willingness to pay by respondent characteristics, and correlation by item was determined through correlation analysis. As for the conditions of use, both sides preferred rural types and were found to have the purpose of healing. However, there were concerns about dizziness in common between system use, and in the case of the disabled person, there were difficulties in purchasing expensive equipment. In the development of the AVRT system, the part of sensory priority, important technology level, and color preference were evaluated, and the preference of content and programs to be developed in the system was identified. Fruit, vegetables, flowers, and animals preferred mandarin, tomato, tulips, and dogs first, horticultural healing preferred harvest management for the ordinary person, plant cultivation for the disabled person, and forest healing and animal education preferred walking and dog-related programs. However, agricultural work was found to be a program with high preference for making processed foods for the ordinary person and creating an animal breeding environment for the disabled person. The result of this study is expected to provide reference data that can be suggested for the development of Agro-healing Virtual Reality Therapy system.

Estimation of genetic correlations and genomic prediction accuracy for reproductive and carcass traits in Hanwoo cows

  • Md Azizul Haque;Asif Iqbal;Mohammad Zahangir Alam;Yun-Mi Lee;Jae-Jung Ha;Jong-Joo Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.682-701
    • /
    • 2024
  • This study estimated the heritabilities (h2) and genetic and phenotypic correlations between reproductive traits, including calving interval (CI), age at first calving (AFC), gestation length (GL), number of artificial inseminations per conception (NAIPC), and carcass traits, including carcass weight (CWT), eye muscle area (EMA), backfat thickness (BF), and marbling score (MS) in Korean Hanwoo cows. In addition, the accuracy of genomic predictions of breeding values was evaluated by applying the genomic best linear unbiased prediction (GBLUP) and the weighted GBLUP (WGBLUP) method. The phenotypic data for reproductive and carcass traits were collected from 1,544 Hanwoo cows, and all animals were genotyped using Illumina Bovine 50K single nucleotide polymorphism (SNP) chip. The genetic parameters were estimated using a multi-trait animal model using the MTG2 program. The estimated h2 for CI, AFC, GL, NAIPC, CWT, EMA, BF, and MS were 0.10, 0.13, 0.17, 0.11, 0.37, 0.35, 0.27, and 0.45, respectively, according to the GBLUP model. The GBLUP accuracy estimates ranged from 0.51 to 0.74, while the WGBLUP accuracy estimates for the traits under study ranged from 0.51 to 0.79. Strong and favorable genetic correlations were observed between GL and NAIPC (0.61), CWT and EMA (0.60), NAIPC and CWT (0.49), AFC and CWT (0.48), CI and GL (0.36), BF and MS (0.35), NAIPC and EMA (0.35), CI and BF (0.30), EMA and MS (0.28), CI and AFC (0.26), AFC and EMA (0.24), and AFC and BF (0.21). The present study identified low to moderate positive genetic correlations between reproductive and CWT traits, suggesting that a heavier body weight may lead to a longer CI, AFC, GL, and NAIPC. The moderately positive genetic correlation between CWT and AFC, and NAIPC, with a phenotypic correlation of nearly zero, suggesting that the genotype-environment interactions are more likely to be responsible for the phenotypic manifestation of these traits. As a result, the inclusion of these traits by breeders as selection criteria may present a good opportunity for developing a selection index to increase the response to the selection and identification of candidate animals, which can result in significantly increased profitability of production systems.

Study on the Characteristics of Cultivation Period, Adaptive Genetic Resources, and Quantity for Cultivation of Rice in the Desert Environment of United Arab Emirates (United Arab Emirates 사막환경에서 벼 재배를 위한 재배기간, 유전자원 및 수량 특성 연구)

  • Jeong, Jae-Hyeok;Hwang, Woon-Ha;Lee, Hyeon-Seok;Yang, Seo-Yeong;Choi, Myoung-Goo;Kim, Jun-Hwan;Kim, Jae-Hyeon;Jung, Kang-Ho;Lee, Su-Hwan;Oh, Yang-Yeol;Lee, Kwang-Seung;Suh, Jung-Pil;Jung, Ki-Yuol;Lee, Jae-Su;Choi, In-Chan;Yu, Seung-hwa;Choi, Soon-Kun;Lee, Seul-Bi;Lee, Eun-Jin;Lee, Choung-Keun;Lee, Chung-Kuen
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.133-144
    • /
    • 2022
  • This study was conducted to investigate the cultivation period, adaptive genetic resources, growth and development patterns, and water consumption for rice cultivation in the desert environment of United Arab Emirates (UAE). R esearch on rice cultivation in the desert environment is expected to contribute to resolving food shortages caused by climate change and water scarcity. It was found that the optimal cultivation period of rice was from late November to late April of the following year during which the low temperature occurred at the vegetative growth stage of rice in the UAE. Asemi and FL478 were selected to be candidate cultivars for temperature and day-length conditions in the desert areas as a result of pre-testing genetic resources under reclaimed soil and artificial meteorological conditions. In the desert environment in the UAE, FL478 died before harvest due to the etiolation and poor growth in the early stage of growth. In contrast, Asemi overcame the etiolation in the early stage of growth, which allowed for harvest. The vegetative growth phases of Asemi were from early December to early March of the following year whereas its reproductive growth and ripening phases were from early March to late March and from late March to late April, respectively. The yield of milled rice for Asemi was 763kg/10a in the UAE, which was about 41.8% higher than that in Korea. Such an outcome was likely due to the abundant solar radiation during the reproductive growth and grain filling periods. On the other hand, water consumption during the cultivation period in the UAE was 2,619 ton/10a, which was about three times higher than that in Korea. These results suggest that irrigation technology and development of cultivation methods would be needed to minimize water consumption, which would make it economically viable to grow rice in the UAE. In addition, select on of genetic resources for the UAE desert environments such as minimum etiolation in the early stages of growth would be merited further studies, which would promote stable rice cultivation in the arid conditions.

Analysis of Year-round Cultivation Characteristics of Artemisia princeps in Greenhouse and Enhancement of Eupathilin Content by Environmental Stress (강화쑥의 온실 주년 재배 특성 분석 및 환경 처리를 통한 유파틸린 성분 증대)

  • Kang, Woo Hyun;Han, Zeesoo;Lee, Seung Jun;Shin, Jong Hwa;Ahn, Tae In;Lee, Joo Young;Kang, Suk Woo;Jung, Sang Hoon;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.94-101
    • /
    • 2018
  • Mugwort (Artemisia princeps) is a medicinal plant that has a substance called euphatilin, which is effective for cell damage and gastritis recovery. The objectives of this study were to investigate the annual growth characteristics of Artemisia princeps in greenhouse and to increase the eupatiline content by environmental stresses. Growth and eupatilin content of the plants were compared after 6 weeks of seedling and subsequent 8 weeks of greenhouse cultivation. Photosynthesis of mugwort plants did not saturate even at a relatively high light intensity of $1,200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Growth rate of the plants reached its highest at two weeks after transplanting and began to decrease since 8 weeks after transplanting. The plants showed typical characteristics of a perennial herbaceous plant as they were sensitive to seasonal changes. In particular, the plants showed high growth and eupatilin content in spring and summer as vegetative growth periods, but flowering and wintering caused considerable decreases in growth and eupatilin content in fall and winter. Therefore, application of night interruption is essential for year-round cultivationof the plant. Two stresses and a elicitor were treated: drought stresses by stopping irrigation at 5, 6, 7, and 8 days before harvest; salt stresses with nutrient solution concentrations of 2, 4, 6, 8, and $10dS{\cdot}m^{-1}$ by adding sodium chloride at 3 days before harvest; and foliar applications of methyl jasmonates of 12.5, 25, 50, and $100{\mu}M$ at 3 days before harvest. Significant increase in eupatilin content was observed at drought stresses of 7- and 8-days of irrigation stop and foliar application of $25{\mu}M$ methyl jasmonate, while no significant increase observed at salt stresses. From the results, it was confirmed that the environmental treatments can improve the productivity and quality of Artemisia princeps as a phamaceutical raw material.

Development of A Two-Variable Spatial Leaf Photosynthetic Model of Irwin Mango Grown in Greenhouse (온실재배 어윈 망고의 위치 별 2변수 엽 광합성 모델 개발)

  • Jung, Dae Ho;Shin, Jong Hwa;Cho, Young Yeol;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.161-166
    • /
    • 2015
  • To determine the adequate levels of light intensity and $CO_2$ concentration for mango grown in greenhouses, quantitative measurements of photosynthetic rates at various leaf positions in the tree are required. The objective of this study was to develop two-variable leaf photosynthetic models of Irwin mango (Mangifera indica L. cv. Irwin) using light intensity and $CO_2$ concentration at different leaf positions. Leaf photosynthetic rates at different positions (top, middle, and bottom) were measured by a leaf photosynthesis analyzer at light intensities (0, 50, 100, 200, 300, 400, 600, and $800{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) with $CO_2$ concentrations (100, 400, 800, 1200, and $1600{\mu}mol{\cdot}mol^{-1}$). The two-variable model consisted of the two leaf photosynthetic models expressed as negative exponential functions for light intensity and $CO_2$ concentrations, respectively. The photosynthetic rates of top leaves were saturated at a light intensity of $400{\mu}mol{\cdot}^{-2}{\cdot}s^{-1}$, while those of middle and bottom leaves saturated at $200{\mu}mol{\cdot}^{-2}{\cdot}s^{-1}$. The leaf photosynthetic rates did not reach the saturation point at a $CO_2$ concentration of $1600imolmol^{-1}$. In validation of the model, the estimated photosynthetic rates at top and bottom leaves showed better agreements with the measured ones than the middle leaves. It is expected that the optimal conditions of light intensity and $CO_2$ concentration can be determined for maximizing photosynthetic rates of Irwin mango grown in greenhouses by using the two-variable model.

Effects of Tropical Night and Light Pollution on Cicadas Calls in Urban Areas (도심지 열대야 및 빛공해에 의한 매미 울음 영향)

  • Ki, Kyong-Seok;Gim, Ji-youn;Yoon, Ki-Sang;Lee, Jae-Yoon
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.4
    • /
    • pp.724-729
    • /
    • 2016
  • Environmental factors that affect the singing of cicadas have not been studied extensively, especially those affecting the cicadas' singing during the nighttime. Therefore, the objective of this study is to identify the effects of tropical night and light pollution on the cicadas' singing in a downtown area. The study sites were an apartment complex in Seocho-gu, Seoul, and the Chiaksan National Park in Wonju-si. The study subjects were Hyalessa fuscata and Cryptotympana atrata, which are the dominant species in Korea during summer. Cicada songs were recorded 24 hours a day, every day. The recording period was between July and August, lasting 25 days at the Seoul site and 14 days at the Chiaksan National Park. Temperature, precipitation, humidity, and amount of sunshine were selected as the environmental factors that potentially affect the cicadas' singing. Statistical analyses included correlations of meteorological factors with the cicadas' singing per hour, per 24 hours, and at nighttime (21:00~04:00). The results showed that: 1) H. fuscata began singing during the dawn hours, and the singing increased in intensity early in the morning. C. atrata's singing reached its peak in the morning and afternoon, ceased during sunset hours, thereby exhibiting a difference in the singing pattern of the two species. 2) The frequency of singing by H. fuscata decreased when C. atrata began to sing intensively in numbers, thereby exhibiting interspecific influence. 3) The results of the correlation analysis between meteorological factors and the singing of H. fuscata and C. atrata showed that both species tended to sing more when the temperature was higher and sang less on rainy days. 4) When limited to nighttime only, C. atrata showed a tendency of singing when the nighttime temperature was high ($24-30^{\circ}C$, average $27^{\circ}C$), whereas H. fuscata did not show a correlation with meteorological factors. However, since H. fuscata sang during the night in areas with artificial lighting, it was concluded that its singing was due to light pollution.

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF

Four-year Survey on Transitions of the Life Form of Plants after Developing Human-made Wetlands along Boknaecheon of Juam Lake (주암호 복내천 인공습지 조성 후 식물의 생활형에 대한 4년간의 변화 연구)

  • Kim, Chang-Hwan;Myung, Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.1
    • /
    • pp.30-40
    • /
    • 2009
  • Employing the Numata-type life form, the paper analyzed changes of plants for 4 years at the Human-made Wetlands along Boknaecheon of Juam Lake since its creation. The number of the species planted at the Human-made Wetlands along Boknaecheon of Juam Lake, which was completed in December 2002, were 15 in total including, 10 families, 13 genera, 12 species and 3 varieties. As for the three-featured life forms of the planted species, there were 6 perennial hydatophytes, recording the biggest number of species in dormancy form; species each of $R_5$, $R_3$, $R_{2-3}$ respectively in radicoid from; 20 species of geomantic dissenminule form ($D_1$) in disseminule form and erecred type(e) existed the most in growth form. With regard to the 3 features of life form identified during the final year of the monitoring that lasted 5 years after the completion of the Wetlands, the number of species and individuals was found to have increased but there was no significant change of tendency as against the composition ration(%) of life form. There were 43 species of therophytes (Th) that covered 24.29% in dormancy form, while $R_5$ was prevalent in radicoid form and $D_4$, $D_1$, and $D_{1,4}$ comprosed 77.39% of the whole disseminule form. Growth form was surveyed in the order of erected type (e), bunch type (t), temporal rosette type (pr), branch type (b) and straight rosette type (ps) and these species comprised 64.97% of the whole flora. Consequently, in case of the artificial wetlands along the Boknaecheon of Juam Lake, it turned out that the vegetation type in which pioneer species of succession, or gradually stabilized perennial vegetation favoring Wetlands because the higher dormancy form has its perennial plants' composition ratio getting, the more its succession is progressing. Even though single grained plants ($R_5$) belonging to radicoid in breeding form, succession is predicted to take place considering the fact that they actually belong to ~ plants like Phragmites japonica that form a connection on the surface of the earth. In addition, it is judged that geomantic disseminule form ($D_1$) conveyed by water and gravitational disseminule form favored by the development of waterside woody plants ($D_4$) seem to be better fit to this area in desseminule form. As for growth form, bunch type (t) is judged to become prevalent on the Wetlands while a good variety of phanerophytes will coexist on the earth due to artificial as well as natural disturbances.