• Title/Summary/Keyword: Breed identification

Search Result 75, Processing Time 0.032 seconds

Individual Identification and Breed Allocation with Microsatellite Markers: An Evaluation in Indian Horses

  • Behl, Rahul;Behl, Jyotsna;Gupta, Neelam;Gupta, S.C.;Ahlawat, S.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • The capability of microsatellite markers for individual identification and their potential for breed assignment of individuals was evaluated in two Indian horse breeds. The strength of these individual assignment methods was also evaluated by increasing the number of loci in increments of five. The probability of identity of two random horses from the two breeds at all twenty five studied loci was as low as $1.08{\times}10^{-32}$ showing their suitability to distinguish between individual horses and their products. In the phylogenetic approach for individual assignment using Nei's genetic distances, 10.81% of horses associated with breed other than the major cluster of the source breed horses when all twenty five microsatellite loci were implemented. Similar results were obtained when the maximum likelihood approach for individual assignment was used. Based on these results it is proposed that, although microsatellite markers may prove very useful for individual identification, their utility for breed assignment of horses needs further evaluation.

DNA markers in chicken for breed discrimination (닭에서 품종 확인을 위한 DNA 마커에 관한 고찰)

  • Hoque, Md. Rashedul;Lee, Seung-Hwan;Lee, Jun-Heon
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.2
    • /
    • pp.211-217
    • /
    • 2012
  • There is an emerging interest in using DNA markers for breed identification in animals. This article reviews the breed identification markers in chicken, mainly developed in Chungnam National University, with particular emphasis on the mitochondrial DNA markers and the nuclear DNA markers including the SNPs in MHC region and the plumage color related MC1R markers. This information would be very useful for an appropriate conservation breeding program as well as for the establishment of molecular markers for chicken breed identifications.

Identification of Beef Breed using DNA Marker of Coat Color Genes (모색 발현 유전자의 DNA Marker를 이용한 쇠고기 품종 판별)

  • Chung Eui-Ryong;Chung Ku-Young
    • Food Science of Animal Resources
    • /
    • v.24 no.4
    • /
    • pp.355-360
    • /
    • 2004
  • In Korean beef market, one of the major problems is mislabeling or fraudulent distribution of Holstein dairy meat or imported beef as domestic Hanwoo meat. Therefore, there has been a great need for a development of technology to identify beef breeds in meat and meat products. This study was carried out to develop the accurate and reliable method for the identification of beef breed using PCR-RFLP marker of MC1R, MGF and TYRPl genes affecting coat colors in cattle. A single base substitution (G\longrightarrowT transition) at the codon for amino acid position 104 of MC1R gene was identified between Hanwoo and Holstein and Angus breeds. The change at this position creates Msp I restriction site in Holstein and Angus, but not in Hanwoo. When the DNA amplified products (537 bp) was digested with Msp I, Hanwoo meat showed a single band of 537bp, while two fragments of 329bp and 208 bp were observed in Holstein meat and Angus breed, respectively. Thus, breed-specific RFLP marker in the MC1R gene can be used to distinguish between Hanwoo meat and Holstein and Angus meats. In the RFLP genotype of MGF gene, the frequency of r/r type was 75% in Manwoo, whereas the frequency of R/R was 80% in Hereford breed. Holstein and Angus breeds showed 100% for R/r type. Therefore, Hanwoo meat showed significant difference in the MGF genotype frequencies compared with those of Holstein meat and imported beef cattle breeds. However, TYRP1 gene showed the same genotype in all breeds examined. Thus, this TYRP1 gene can not be used as a molecular marker for breed identification. As a consequence, we suggest that RFLP markers of the MC1R and MGF coat color genes could be used as DNA marker for identification of Hanwoo meat from Holstein and imported meats.

Identification of Korean Native Goat Meat using Amplified Fragment Length Polymorphism (AFLP) DNA Markers (Amplified Fragment Length Polymorphism (AFLP) DNA Marker를 이용한 한국 재래흑염소육 감별)

  • 정의룡
    • Food Science of Animal Resources
    • /
    • v.22 no.4
    • /
    • pp.301-309
    • /
    • 2002
  • This study was carried out to develop the breed-specific DNA markers for breed identification of Korean native goat meat using amplified fragment length polymorphism (AFLP)-PCR techniques. The genomic DNAs of Korean native goat, imported black goat and four dairy goat breeds(Saanen, Alpine, Nubian and Toggenburg) were extracted from muscle tissues or blood. Genomic DNA was digested with a particular combination of two restriction enzymes with 4 base(Mse I and Taq I) and 6 base(EcoR I and Hind III) recognition sites, ligated to restriction specific adapters and amplified using the selective primer combinations. In AFLP profiles of polyacrylamide gels, the number of scorable bands produced per primer combination varied from 36 to 74, with an average of 55.5. A total of 555 bands were produced, 149(26.8%) bands of which were polymorphic. Among the ten primer combinations, two bands with 2.01 and 1.26 kb in M13/H13 primer and one band with 1.65 kb in E35/H14 primer were found to be breed-specific AFLP markers in Korean native goat when DNA bands were compared among the goat breeds. In the E35/H14 primer combination, 2.19, 2.03, 0.96 and 0.87 kb bands detected in imported black goat, 2.13 kb band in Saanen breed and 2.08 kb band in Nubian breed were observed as breed-specific bands showing differences between goat breeds, respectively. The E35/H14 primer combination produced four DNA bands distinguished between Korean native goat and Saanen breed. The is study suggested that the breed specific AFLP bands could be used as DNA markers for the identification of Korean native goat meat from imported black goat and dairy goat meats.

Discrimination of Korean Native Chicken Populations Using SNPs from mtDNA and MHC Polymorphisms

  • Hoque, M.R.;Lee, S.H.;Jung, K.C.;Kang, B.S.;Park, M.N.;Lim, H.K.;Choi, K.D.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1637-1643
    • /
    • 2011
  • Korean native chickens are a very valuable chicken population in Korea and their prices are higher than that of commercial broilers. In order to discriminate two commercial Korean native chicken populations (CCP1 and CCP2), single nucleotide polymorphisms (SNPs) from mitochondrial (mt) DNA D-loop sequences and LEI0258 marker polymorphisms in the major histocompatibility complex (MHC) region were investigated. A total of 718 birds from nine populations were sampled and 432 mtDNA sequences were obtained. Of these, two commercial Korean native chicken populations (363 birds) were used for investigation of their genetic relationship and breed differentiation. The sequence data classified the chickens into 20 clades, with the largest number of birds represented in clade 1. Analysis of the clade distribution indicated the genetic diversity and relation among the populations. Based on the mtDNA sequence analysis, three selected SNPs from mtDNA polymorphisms were used for the breed identification. The combination of identification probability (Pi) between CCP1 and CCP2 using SNPs from mtDNA and LEI0258 marker polymorphisms was 86.9% and 86.1%, respectively, indicating the utility of these markers for breed identification. The results will be applicable in designing breeding and conservation strategies for the Korean native chicken populations and also used for the development of breed identification markers.

Identification of Korean Native Pork Using Breed-Specific DNA Marker of KIT Gene

  • Chung, Eui-Ryong;Chung, Ku-Young
    • Food Science of Animal Resources
    • /
    • v.30 no.3
    • /
    • pp.403-409
    • /
    • 2010
  • Accurate methods for the identification of closely related species or breeds in raw and processed meats must be developed in order to protect both consumers and producers from mislabeling and fraud. This paper describes the development of DNA markers for the discrimination and improvement of Korean native pig (KNP) meat. The KIT gene is related to pig coat color and is often used as a candidate marker. A 538 bp fragment comprising intron 19 of the pig KIT gene was amplified by PCR using specific primers, after which the PCR amplicons of a number of meat samples from KNP and three major improved breeds (Landrace, Duroc and Yorkshire) were sequenced in order to find a nucleotide region suitable for PCR-RFLP analysis. Sequence data showed the presence of two nucleotide substitutions, g.276G>A and g.295A>C, between KNP and the improved pig breeds. Digestion of KIT amplicons with AccII enzyme generated characteristic PCR-RFLP profiles that allowed discrimination between meats from KNP and improved pig. KNP showed three visible DNA bands of 264/249, 199, and 75 bp, whereas DNA bands of 249, 199, and 90 bp were detected in the three improved pig breeds. Therefore, the 75 bp DNA fragment was specific only to KNP, whereas the 90 bp DNA fragment was specific to the improved breeds. The breed-specific DNA markers reported here that target the KIT gene could be useful for the identification of KNP meat from improved pig meats, thus contributing to the prevention of falsified breed labeling.

Single Nucleotide Polymorphism Analysis of the COI Gene in Korean Native Chicken (한국재래닭 COI 유전자의 단일염기다형 분석)

  • Jin, S.D.;Seo, D.W.;Sim, J.M.;Baek, W.K.;Jung, K.C.;Jang, B.K.;Choi, K.D.;Lee, J.H.
    • Korean Journal of Poultry Science
    • /
    • v.36 no.1
    • /
    • pp.85-88
    • /
    • 2009
  • One of the mitochondrial genes, called cytochrome c oxidase I (COI), has been widely used for the species identification (called bio-barcode) in birds. In this study, the bio-barcode has been applied to chicken breeds in Korea whether it also can be used as a molecular marker for breed identification. Data indicated that Korean native chicken has the mixed SNP (single nucleotide polymorphism) patterns between White Leghorn (Layer) and Cornish (Broiler) and ultimately, it can not be used as the marker for breed identification. However, this result indicates the mixed use of the Korean native chicken, since it has been used for dual purpose for producing meat and egg for a long time. In order to use as a marker for species identification, more reliable mitochondrial and/or nuclear DNA markers need to be developed.

Individual Identification using The Multiplex PCR with Microsatellite Markers in Swine

  • Kim, Lee-Kung;Park, Chang-Min;Park, Sun-Ae;Kim, Seung-Chang;Chung, Hoyoung;Chai, Han-Ha;Jeong, Gyeong-Yong;Choi, Bong-Hwan
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.205-211
    • /
    • 2013
  • The swine is one of the most widespread mammalian throughout the whole world. Presently, many studies concerning microsatellites in swine, especially domestic pigs, have been carried out in order to investigate general diversity patterns among either populations or breeds. Until now, a lot of time and effort spend into a single PCR method. But simple and more rapid multiplex PCR methods have been developed. The purpose of this study is to develop a robust set of microsatellites markers (MS marker) for traceability and individual identification. Using multiplex-PCR method with 23 MS marker divided 2 set, various alleles occurring to 5 swine breed (Berkshire, Landrace, Yorkshire, Duroc and Korea native pig) used markers to determine allele frequency and heterozygosity. MS marker found 4 alleles at SW403, S0227, SWR414, SW1041 and SW1377. The most were found 10 alleles at SW1920. Heterozygosity represented the lowest value of 0.102 at SWR414 and highest value of 0.861 at SW1920. So, it was recognized appropriate allele frequency for individual identification in swine. Using multiplex-PCR method, MS markers used to determine individual identification biomarker and breed-specific marker for faster, more accurate and lower analysis cost. Based on this result, a scientific basis was established to the existing pedigree data by applying genetics additionally. Swine traceability is expected to be very useful system and be conducted nationwide in future.

Genetic Variability of mtDNA D-loop Region in Korean Native Chickens

  • Hoque, Md. Rashedul;Jung, Kie-Chul;Park, Byung-Kwon;Choi, Kang-Duk;Lee, Jun-Heon
    • Korean Journal of Poultry Science
    • /
    • v.36 no.4
    • /
    • pp.323-328
    • /
    • 2009
  • In order to determine the origin and genetic diversity among chicken breeds, mitochondrial (mt) DNA D-loop sequences have been widely used. In this study, 41 individuals from four breeds (Korean native chicken (Black and Brown) and two imported breeds, Rhode Island Red and Cornish) were used for identifying genetic relationships with other chicken breeds. We obtained ten haplotypes and the highest number of haplotype was represented by eight individuals each from haplotype 1 and haplotype 2. Neighbor-joining phylogenetic tree indicates that the black and brown Korean native chicken breeds were mixed in haplotype 2 and they were closely related with the red jungle fowl (Gallus gallus). We also investigated whether the D-loop hypervariable region in chicken mtDNA can be used for the breed identification marker. The results indicated that the combination of the SNPs in the D-loop region can be possibly used for the breed discriminating markers. The results obtained in this study can be used for designing proper breeding and conservation strategies for Korean native chicken, as well as development of breed identification markers.

Evaluation and Identification of Promising Bivoltine Breeds in the Silkworm Bombyx mori L.

  • Begum, Azeezur Rehman Naseema;Basavaraja, Hadikere Kallappa;Joge, Punjab Govindrai;Palit, Aditya Kumar
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • Under the all India programme of evaluation of mulberry and silkworm genotypes, twelve bivoltine silkworm breeds obtained from Central Silkworm Germplasm Resource Centre, Hosur (CSGRC) were evaluated at the bivoltine silkworm breeding laboratory, Central Sericultural Research & Training Institute, Mysore (CSR&TI). These breeds were tested during September-October 2003, August-September 2004 and February-March 2005. The average temperature and humidity during September-October 2003 was $26.5^{\circ}C$ and 72.6% RH, while during August-September 2004, it was $26.5^{\circ}C$ and 75.2% RH and during February-March 2005 it was $24^{\circ}C$ and 48% RH respectively. The performance of the breeds in respect of 21 traits was studied and statistically analyzed using analysis of variance (Singh and Choudhary, 1985). Silkworm breeds were short-listed using multiple trait evaluation index method as suggested by Mano et at., (1993). Evaluation Index values were calculated for all the 11 traits of economic importance and six breeds were short-listed based on average index value 50 and above 50. Two breed viz., BV 183 (SMGS-1) have recorded average E.I. >50 in 10 traits (except in neatness) and ranked first and the breed BV 262 (SMGS9) with E.I. value >50 in nine traits except in cocoon weight and neatness ranked second, in the order of merit. These two breeds may be selected as resource material for evolving region specific silkworm breeds.