• Title/Summary/Keyword: Breathing phase

Search Result 53, Processing Time 0.024 seconds

Rotational State Distribution of CO₂ after a Collision with H Atom

  • 김유항;김성훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.644-648
    • /
    • 1995
  • Based on the collisional time correlation function (CTCF) formalism, Kim and Micha derived a simple expression which gives nascent rotational state distribution of molecules after collision with fast atoms.32 The expression is valid when the collision time is short and the collision is impulsive in nature. This expression has been applied to analyze the experimentally measured, state resolved rotational distribution of CO2 in various types of vibrational levels, i.e., (0001), (0111), (0002), and (1000/0200). The theoretical distributions obtained from this CTCF based expression can represent the experimentally measured rotational distributions remarkably well, and have been found to be much superior to those obtained from other simple theories such as Boltzmann distribution, prior distribution, breathing ellipsoid model, and phase space statistical calculation.

Impact of Respiratory Phase during Pleural Puncture on Complications in CT-Guided Percutaneous Lung Biopsy (CT 유도 경피 폐생검에서 흉막 천자 시 호흡 시기가 합병증에 미치는 영향)

  • Ji Young Park;Ji-Yeon Han;Seok Jin Choi;Jin Wook Baek;Su Young Yun;Sung Kwang Lee;Ho Young Lee;SungMin Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.3
    • /
    • pp.566-578
    • /
    • 2024
  • Purpose This study investigated whether the respiratory phase during pleural puncture in CT-guided percutaneous transthoracic needle biopsy (PTNB) affects complications. Materials and Methods We conducted a retrospective review of 477 lung biopsy CT scans performed during free breathing. The respiratory phases during pleural puncture were determined based on the table position of the targeted nodule using CT scans obtained during free breathing. We compared the rates of complications among the inspiratory, mid-, and expiratory respiratory phases. Logistic regression analysis was performed to control confounding factors associated with pneumothorax. Results Among the 477 procedures, pleural puncture was performed during the expiratory phase in 227 (47.6%), during the mid-phase in 108 (22.6%), and during the inspiratory phase in 142 (29.8%). The incidence of pneumothorax was significantly lower in the expiratory puncture group (40/227, 17.6%; p = 0.035) and significantly higher in the mid-phase puncture group (31/108, 28.7%; p = 0.048). After controlling for confounding factors, expiratory-phase puncture was found to be an independent protective factor against pneumothorax (odds ratio = 0.571; 95% confidence interval = 0.360-0.906; p = 0.017). Conclusion Our findings suggest that pleural puncture during the expiratory phase may reduce the risk of pneumothorax during image guided PTNB.

A Study on the Textile Sensor Applied to Smart Wear for Monitoring Meditation Breathing (명상호흡 모니터링용 스마트의류를 위한 호흡수 측정 직물센서 연구)

  • Hwang, Su Jung;Jung, Yoon Won;Lee, Joo Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2018
  • The purpose of this study is for fundamental research of meditation smart wear for physical and mental healing, and researching method for monitoring phase of meditation through textile by measuring the number of abdominal respiration when meditating. For this purpose, the research implemented Single Wall Carbon Nano-Tube (SWCNT) based strain gauges type textile sensor, considered reliability and validity of respiratory sensing, and analyzed efficiency of respiratory sensing based on body parts comparatively. The first preliminary experiment was to evaluate the performance of textile sensor through abdominal model dummy which open and shut of 5 cm repeatedly for 2 minutes at the rate of 0.1Hz in order to simulate abdominal respiration. It concluded signal efficiency between reference sensor(BIOPAC) and textile respiratory sensor appears statistically significant (p<0.001). The second experiment were conducted with 4 subjects doing abdominal respiration under same conditions, and after comparing the signal values between two sensors from 4 attached locations(around center and sides of omphali and phren), center of omphali and sides of phren were selected as suitable location for measuring meditational breathing as they showed large and stable signals. In result, this research aimed for implementing of the textile sensor for sensing meditational breathing of long respiration cycle, review of reliability and validity for sensing number of meditational respiration with the sensor and consideration of sensing efficiency by sensing location on body parts.

Alcohol and Sleep (수면과 알코올)

  • Park, Doo-Heum;Yu, Jae-Hak;Ryu, Seung-Ho
    • Sleep Medicine and Psychophysiology
    • /
    • v.13 no.1
    • /
    • pp.5-10
    • /
    • 2006
  • Alcohol has extensive effects on sleep and daytime sleepiness. Alcohol has a sleep inducing effect and the effect of increased non-REM sleep and suppressed REM sleep during the first half portion of night sleep, but alcohol induces the effect of decreased non-REM sleep and increased light sleep and frequent awakenings and REM rebound during the second half portion of night sleep. Alcohol provokes chronobiological change such as the changes of amplitude or the phase shifts of hormones or core body temperature. The sleep disruption resulting from alcohol drinking may lead to daytime fatigue and sleepiness. The elderly are at particular in the increased risk of alcohol-related sleep disorders because they achieve higher levels of alcohol in the blood and brain than do younger adults after consuming an equivalent dose. Bedtime alcohol consumption among older adults may lead to unsteadiness if walking is attempted during the night, with increased risk of falls and injuries. Continued alcohol use for sleep induction often induces aggravation of insomnia, alcoholism or sleep related breathing disorders such as obstructive sleep apnea. Alcohol should not be used as substitution of sleep pill because of the dependence and tolerance for sleep inducing effect, and the sleep disruption produced by alcohol withdrawal.

  • PDF

The experimental research on periodic airflow in human nasal cavity (비강내 주기유동장의 실험적 해석에 관한 연구)

  • Kim, Sung-Kyun;Son, Yeong-Rak;Sin, Seok-Jae
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1687-1692
    • /
    • 2004
  • Airflow in the nasal cavity of a normal Korean adult is investigated experimentally by tomographic PIV measurement. Knowledge of airflow characteristics in nasal cavities is essential to understand the physiology and pathology aspects of nasal breathing. Several studies have utilized physical models of the healthy nasal cavity to investigate the relationship between nasal anatomy and airflow. All of these researches on nasal airflow are under the condition of constant flow-rate. In this study, nasal cavity flow with the physiological period is investigated by tomographic PIV, for the first time. A pumping system that can produce the periodic flow is created. Thanks to a new method for the model casting by a combination of the rapid prototyping and curing of clear silicone, a transparent rectangular box containing the complex nasal cavity can be made for PIV. The CBC PIV algorithm is used for analysis. Phase-averaged mean and RMS velocity distributions are obtained for inspirational and expiration nasal airflows. The comparison with the constant flow case is appreciated. There exist many flow patterns depending on each phase.

  • PDF

Dose verification for Gated Volumetric Modulated Arc Therapy according to Respiratory period (호흡연동 용적변조 회전방사선치료에서 호흡주기에 따른 선량전달 정확성 검증)

  • Jeon, Soo Dong;Bae, Sun Myung;Yoon, In Ha;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • Purpose : The purpose of this study is to verify the accuracy of dose delivery according to the patient's breathing cycle in Gated Volumetric Modulated Arc Therapy Materials and Methods : TrueBeam STxTM(Varian Medical System, Palo Alto, CA) was used in this experiment. The Computed tomography(CT) images that were acquired with RANDO Phantom(Alderson Research Laboratories Inc. Stamford. CT, USA), using Computerized treatment planning system(Eclipse 10.0, Varian, USA), were used to create VMAT plans using 10MV FFF with 1500 cGy/fx (case 1, 2, 3) and 220 cGy/fx(case 4, 5, 6) of doserate of 1200 MU/min. The regular respiratory period of 1.5, 2.5, 3.5 and 4.5 sec and the patients respiratory period of 2.2 and 3.5 sec were reproduced with the $QUASAR^{TM}$ Respiratory Motion Phantom(Modus Medical Devices Inc), and it was set up to deliver radiation at the phase mode between the ranges of 30 to 70%. The results were measured at respective respiratory conditions by a 2-Dimensional ion chamber array detector(I'mRT Matrixx, IBA Dosimetry, Germany) and a MultiCube Phantom(IBA Dosimetry, Germany), and the Gamma pass rate(3 mm, 3%) were compared by the IMRT analysis program(OmniPro I'mRT system software Version 1.7b, IBA Dosimetry, Germany) Results : The gamma pass rates of Case 1, 2, 3, 4, 5 and 6 were the results of 100.0, 97.6, 98.1, 96.3, 93.0, 94.8% at a regular respiratory period of 1.5 sec and 98.8, 99.5, 97.5, 99.5, 98.3, 99.6% at 2.5 sec, 99.6, 96.6, 97.5, 99.2, 97.8, 99.1% at 3.5 sec and 99.4, 96.3, 97.2, 99.0, 98.0, 99.3% at 4.5 sec, respectively. When a patient's respiration was reproduced, 97.7, 95.4, 96.2, 98.9, 96.2, 98.4% at average respiratory period of 2.2 sec, and 97.3, 97.5, 96.8, 100.0, 99.3, 99.8% at 3.5 sec, respectively. Conclusion : The experiment showed clinically reliable results of a Gamma pass rate of 95% or more when 2.5 sec or more of a regular breathing period and the patient's breathing were reproduced. While it showed the results of 93.0% and 94.8% at a regular breathing period of 1.5 sec of Case 5 and 6, it could be confirmed that the accurate dose delivery could be possible on the most respiratory conditions because based on the results of 100 patients's respiratory period analysis as no one sustained a respiration of 1.5 sec. But, pretreatment dose verification should be precede because we can't exclude the possibility of error occurrence due to extremely short respiratory period, also a training at the simulation and careful monitoring are necessary for a patient to maintain stable breathing. Consequently, more reliable and accurate treatments can be administered.

Clinical Significance of Airway Resistance Curve by the Body Plethysmograph (Body Plethysmograph를 이용한 Airway Resistance Curve의 임상적 의의)

  • Cheon, Seon-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.2
    • /
    • pp.218-225
    • /
    • 1995
  • Background: Airway resistance(Raw) is measured with the body plethysmograph by displaying the relationship between airflow and alveolar pressure($V/P_A$). If the resistance curve on $V/P_A$ tracing is curved or looped, the estimation of Raw is difficult. This study was designed to examine wheather there is any correlation between the shape of resistance curve and the clinical status and the pulmonary function of patients. Methods: The 146 pulmonary disease patients with increased Raw were included in this study. The shapes of resistance curves on $V/P_A$ tracing with body plethysmograph during quiet breathing were analyzed and compared with pulmonary function. Results: The results were as follows ; 1) The shapes of resistance curves were summarized in 5 categories; type 1: linear, type 2: ovoid, type 3: sigmoid, type 4: scoop, type 5: paisley. The type 3 except 1 case, type 4 and type 5 were found to have loop mainly in expiratory phase. 2) Although the shapes of resistance curves were not typical for specific disease, the resistance curves of acute disease tended to belong to type 1 or 2 and those of chronic airflow obstruction tended to belong to type 3, 4 or 5. But resistance curves of bronchial asthma and destructive lung with tuberculosis showed all types in proportion to degree of airflow obstruction or destruction of parenchyme. 3) In the cases of resistance curves going to type 5 rather than type 1 and those with looping, airflow obstuction tended to be severe and airway resistance and residual volume tended to increase. Conclusions: Analysis of resistance curve on $V/P_A$ tracing measuring airway resistance is helpful for judging degree of airflow obstruction and air trapping. Although the shape of resistance curve is not typical for specific disease, there is a close association between looping and airway obstruction.

  • PDF

Quantitative Comparison of Motion Artifacts in PET Images using Data-Based Gating (데이터 기반 게이팅을 이용한 PET 영상의 움직임 인공물의 정량적 비교)

  • Jin Young, Kim;Gye Hwan, Jin
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.91-98
    • /
    • 2023
  • PET is used effectively for biochemical or pathological phenomena, disease diagnosis, prognosis determination after treatment, and treatment planning because it can quantify physiological indicators in the human body by imaging the distribution of various biochemical substances. However, since respiratory motion artifacts may occur due to the movement of the diaphragm due to breathing, we would like to evaluate the practical effect by using the a device-less data-driven gated (DDG) technique called MotionFree with the phase-based gating correction method called Q.static scan mode. In this study, images of changes in moving distance (0 cm, 1 cm, 2 cm, 3 cm) are acquired using a breathing-simulated moving phantom. The diameters of the six spheres in the phantom are 10 mm, 13 mm, 17 mm, 22 mm, 28 mm, and 37 mm, respectively. According to maximum standardized uptake value (SUVmax) measurements, when DDG was applied based on the moving distance, the average SUVmax of the correction effect by the moving distance was improved by 1.92, 2.48, 3.23 and 3.00, respectively. When DDG was applied based on the diameter of the phantom spheres, the average SUVmax of the correction effect by the moving distance was improved by 2.37, 2.02, 1.44, 1.20, 0.42 and 0.52 respectively.

Evaluation of the Usefulness of Restricted Respiratory Period at the Time of Radiotherapy for Non-Small Cell Lung Cancer Patient (비소세포성 폐암 환자의 방사선 치료 시 제한 호흡 주기의 유용성 평가)

  • Park, So-Yeon;Ahn, Jong-Ho;Suh, Jung-Min;Kim, Yung-Il;Kim, Jin-Man;Choi, Byung-Ki;Pyo, Hong-Ryul;Song, Ki-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.123-135
    • /
    • 2012
  • Purpose: It is essential to minimize the movement of tumor due to respiratory movement at the time of respiration controlled radiotherapy of non-small cell lung cancer patient. Accordingly, this Study aims to evaluate the usefulness of restricted respiratory period by comparing and analyzing the treatment plans that apply free and restricted respiration period respectively. Materials and Methods: After having conducted training on 9 non-small cell lung cancer patients (tumor n=10) from April to December 2011 by using 'signal monitored-breathing (guided- breathing)' method for the 'free respiratory period' measured on the basis of the regular respiratory period of the patents and 'restricted respiratory period' that was intentionally reduced, total of 10 CT images for each of the respiration phases were acquired by carrying out 4D CT for treatment planning purpose by using RPM and 4-dimensional computed tomography simulator. Visual gross tumor volume (GTV) and internal target volume (ITV) that each of the observer 1 and observer 2 has set were measured and compared on the CT image of each respiratory interval. Moreover, the amplitude of movement of tumor was measured by measuring the center of mass (COM) at the phase of 0% which is the end-inspiration (EI) and at the phase of 50% which is the end-exhalation (EE). In addition, both observers established treatment plan that applied the 2 respiratory periods, and mean dose to normal lung (MDTNL) was compared and analyzed through dose-volume histogram (DVH). Moreover, normal tissue complication probability (NTCP) of the normal lung volume was compared by using dose-volume histogram analysis program (DVH analyzer v.1) and statistical analysis was performed in order to carry out quantitative evaluation of the measured data. Results: As the result of the analysis of the treatment plan that applied the 'restricted respiratory period' of the observer 1 and observer 2, there was reduction rate of 38.75% in the 3-dimensional direction movement of the tumor in comparison to the 'free respiratory period' in the case of the observer 1, while there reduction rate was 41.10% in the case of the observer 2. The results of measurement and comparison of the volumes, GTV and ITV, there was reduction rate of $14.96{\pm}9.44%$ for observer 1 and $19.86{\pm}10.62%$ for observer 2 in the case of GTV, while there was reduction rate of $8.91{\pm}5.91%$ for observer 1 and $15.52{\pm}9.01%$ for observer 2 in the case of ITV. The results of analysis and comparison of MDTNL and NTCP illustrated the reduction rate of MDTNL $3.98{\pm}5.62%$ for observer 1 and $7.62{\pm}10.29%$ for observer 2 in the case of MDTNL, while there was reduction rate of $21.70{\pm}28.27%$ for observer 1 and $37.83{\pm}49.93%$ for observer 2 in the case of NTCP. In addition, the results of analysis of correlation between the resultant values of the 2 observers, while there was significant difference between the observers for the 'free respiratory period', there was no significantly different reduction rates between the observers for 'restricted respiratory period. Conclusion: It was possible to verify the usefulness and appropriateness of 'restricted respiratory period' at the time of respiration controlled radiotherapy on non-small cell lung cancer patient as the treatment plan that applied 'restricted respiratory period' illustrated relative reduction in the evaluation factors in comparison to the 'free respiratory period.

  • PDF

The Assessment of the Breath Hold and the Free Breath Methods about the Blood Flow Evaluation by Using Phase Contrast MRI (위상대조도 자기공명영상을 이용한 심장 혈류평가에 있어서 호흡정지 기법과 비 호흡정지 기법의 비교평가)

  • Kim, Seong-Ho
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • Measurement of cardiac blood flow using the magnetic resonance imaging has been limited due to breathing and involuntary movements of the heart. The present study attempted to improve the accuracy of cardiac blood flow testing through phase contrast magnetic resonance imaging by presenting the adequate breathing method and imaging variables by comparing the measurement values of cardiac blood flow. Each was evaluated by comparing the breath hold retrospective 1NEX and non breath hold retrospective 1-3NEX in the ascending aorta and descending aorta. As a result, the average blood flow amount/velocity of the breath hold retrosepctive 1NEX method in the ascending aorta were $96.17{\pm}19.12ml/sec$, $17.04{\pm}4.12cm/sec$ respectively, which demonstrates a statistically significant difference(p<0.05) with the non-breath hold retrospective method 1NEX of $72.31{\pm}13.27ml$ and $12.32{\pm}3.85$. On the other hand, the average 2NEX blood flow and mean flow velocity is $101.90{\pm}24.09$, $16.84{\pm}4.32$, 3NEX $103.06{\pm}25.49$, $16.88{\pm}4.19$ did not show statistically significant differences(p>0.05).The average blood flow amount/ velocity of the breath hold retrospective 1NEX method in the descending aorta were $76.68{\pm}19.72ml/s$, and $22.23{\pm}4.8$, which did not demonstrate a significant difference in comparison to non-breath hold retrospective method 1-3 NEX. Therefore, the non breath hold retrospective method does not significantly differ in terms of cardiac blood flow in comparison with the breath hold retrospective method in accordance with the increase of NEX, so pediatric patients or patients who are not able to breathe well must have the diagnostic value of their cardiac blood flow tests improved.